Publication Date

2015

Abstract

Background: Environmental enrichment has been shown to improve symptoms and reduce neuropathology in mouse models of Huntington’s disease (HD); however results are limited to ex vivo techniques with associated shortcomings. In-vivo magnetic resonance imaging (MRI) can overcome some of the shortcomings and is applied for the first time here to assess the effect of a cognitive intervention in a mouse model of HD. Objectives:We aimed to investigate whether in-vivo high-fieldMRIcan detect a disease-modifying effect in tissue macrostructure following a cognitive enrichment regime. Methods: YAC128 transgenic and wild type mice were exposed to cognitive enrichment throughout their lifetime. At 20-months old, mice were scanned with a T2-weighted MRI sequence and a region-of-interest (ROI) approachwas used to examine structural changes. Locomotor activity and performance on the rotarod and serial discrimination watermaze task were assessed to measure motor and cognitive function respectively. Results: Mice exposed to cognitive enrichment were more active and able to stay on a rotating rod longer compared to control mice, with comparable rotarod performance between HD enriched mice and wild-type mice. YAC128 mice demonstrated cognitive impairments which were not improved by cognitive enrichment. In-vivo MRI revealed a reduction in the degree of caudate-putamen atrophy in the enriched HD mice. Conclusions: We provide in vivo evidence of a beneficial effect of environmental enrichment on neuropathology and motor function in a HD mouse model. This demonstrates the efficacy of MRI in a model of HD and provides the basis for an in-vivo non-destructive outcome measure necessary for longitudinal study designs to understand the effect of enrichment with disease progression.

School/Institute

Mary MacKillop Institute for Health Research

Document Type

Journal Article

Access Rights

ERA Access

Access may be restricted.

Share

COinS