Publication Date

2017

Abstract

The AMP‐activated protein kinase (AMPK) is a heterotrimeric protein complex that is an important sensor of cellular energy status. Reduced expression of the AMPK β1 isoform has been linked to reduced survival in different cancers, but whether this accelerates tumor progression and the potential mechanism mediating these effects are not known. Furthermore, it is unknown whether AMPK β1 is implicated in tumorigenesis, and if so, what tissues may be most sensitive. In the current study, we find that in the absence of the tumor suppressor p53, germline genetic deletion of AMPK β1 accelerates the appearance of a T‐cell lymphoma that reduces lifespan compared to p53 deficiency alone. This increased tumorigenesis is linked to increases in interleukin‐1β (IL1β), reductions in acetyl‐CoA carboxylase (ACC) phosphorylation, and elevated lipogenesis. Collectively, these data indicate that reductions in the AMPK β1 subunit accelerate the development of T‐cell lymphoma, suggesting that therapies targeting this AMPK subunit or inhibiting lipogenesis may be effective for limiting the proliferation of p53‐mutant tumors.

School/Institute

Mary MacKillop Institute for Health Research

Document Type

Open Access Journal Article

Access Rights

Open Access

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Oncology Commons

Share

COinS