Publication Date



‘Off-the-shelf’ tissue-engineered skin alternatives for epidermal and dermal skin layers are available; however, no such alternative for the subdermal fat layer exists. Without this well-vascularized layer, skin graft take is variable and grafts may have reduced mobility, contracture and contour defects. In this study a novel adipose-derived acellular matrix (Adipogel) was investigated for its properties to generate subdermal fat in a rat model. In a dorsal thoracic site, a 1 × 1 cm Adipogel implant was inserted within a subdermal fat layer defect. In a dorsal lumbar site, an Adipogel implant was inserted in a subfascial pocket. Contralateral control defects remained empty. At 8 weeks wound/implant sites were evaluated histologically, immunohistochemically and morphometrically. Identifiable thoracic Adipogel implants lost volume in vivo over 8 weeks. Neovascularization and adipogenesis were evident within implants and adipocyte percentage volume was 33.07 ± 6.55% (mean ± SEM). A comparison of entire cross-sections of thoracic wounds demonstrated a significant increase in total wound fat in Adipogel-implanted wounds (37.19 ± 4.48%, mean ± SEM) compared to control (16.53 ± 4.60%; p = 0.0092), indicating that some Adipogel had been completely converted to normal fat. At the lumbar site, Adipogel also lost volume, appearing flattened, although fat generation and angiogenesis occurred. At both sites macrophage infiltration was mild, whilst many infiltrating cells were PDGFRβ-positive mesenchymal cells. Adipogel is adipogenic and angiogenic and is a promising candidate for subcutaneous fat regeneration; it has the potential to be a valuable adjunct to wound-healing therapy and reconstructive surgery practice.


School of Exercise Science

Document Type

Journal Article

Access Rights

ERA Access

Access may be restricted.