Publication Date

2018

Abstract

Context Serum estradiol (E2) and estrone (E1) levels exhibit substantial heritability. Objective To investigate the genetic regulation of serum E2 and E1 in men. Design, Setting, and Participants Genome-wide association study in 11,097 men of European origin from nine epidemiological cohorts. Main Outcome Measures Genetic determinants of serum E2 and E1 levels. Results Variants in/near CYP19A1 demonstrated the strongest evidence for association with E2, resolving to three independent signals. Two additional independent signals were found on the X chromosome; FAMily with sequence similarity 9, member B (FAM9B), rs5934505 (P = 3.4 × 10−8) and Xq27.3, rs5951794 (P = 3.1 × 10−10). E1 signals were found in CYP19A1 (rs2899472, P = 5.5 × 10−23), in Tripartite motif containing 4 (TRIM4; rs17277546, P = 5.8 × 10−14), and CYP11B1/B2 (rs10093796, P = 1.2 × 10−8). E2 signals in CYP19A1 and FAM9B were associated with bone mineral density (BMD). Mendelian randomization analysis suggested a causal effect of serum E2 on BMD in men. A 1 pg/mL genetically increased E2 was associated with a 0.048 standard deviation increase in lumbar spine BMD (P = 2.8 × 10−12). In men and women combined, CYP19A1 alleles associated with higher E2 levels were associated with lower degrees of insulin resistance. Conclusions Our findings confirm that CYP19A1 is an important genetic regulator of E2 and E1 levels and strengthen the causal importance of E2 for bone health in men. We also report two independent loci on the X-chromosome for E2, and one locus each in TRIM4 and CYP11B1/B2, for E1.

School/Institute

Mary MacKillop Institute for Health Research

Document Type

Open Access Journal Article

Access Rights

Open Access

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS