Publication Date



Patients with non-specific low back pain (NSLBP) show an impaired postural control during standing and a slower performance of sit-to-stand-to-sit (STSTS) movements. Research suggests that these impairments could be due to an altered use of ankle compared to back proprioception. However, the neural correlates of these postural control impairments in NSLBP remain unclear. Therefore, we investigated brain activity during ankle and back proprioceptive processing by applying local muscle vibration during functional magnetic resonance imaging in 20 patients with NSLBP and 20 controls. Correlations between brain activity during proprioceptive processing and (Airaksinen et al., 2006) proprioceptive use during postural control, evaluated by using muscle vibration tasks during standing, and (Altmann et al., 2007) STSTS performance were examined across and between groups. Moreover, fear of movement was assessed. Results revealed that the NSLBP group performed worse on the STSTS task, and reported more fear compared to healthy controls. Unexpectedly, no group differences in proprioceptive use during postural control were found. However, the relationship between brain activity during proprioceptive processing and behavioral indices of proprioceptive use differed significantly between NSLBP and healthy control groups. Activity in the right amygdala during ankle proprioceptive processing correlated with an impaired proprioceptive use in the patients with NSLBP, but not in healthy controls. Moreover, while activity in the left superior parietal lobule, a sensory processing region, during back proprioceptive processing correlated with a better use of proprioception in the NSLBP group, it was associated with a less optimal use of proprioception in the control group. These findings suggest that functional brain changes during proprioceptive processing in patients with NSLBP may contribute to their postural control impairments.


Mary MacKillop Institute for Health Research

Document Type

Open Access Journal Article

Access Rights

Open Access

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.