Publication Date



Repeated sampling approaches to inference that rely on simulations have recently gained prominence in statistics education, and probabilistic concepts are at the core of this approach. In this approach, learners need to develop a mapping among the problem situation, a physical enactment, computer representations, and the underlying randomization and sampling processes. We explicate the role of probability in this approach and draw upon a models and modeling perspective to support the development of teachers' models for using a repeated sampling approach for inference. We explicate the model development task sequence and examine the teachers' representations of their conceptualizations of a repeated sampling approach for inference. We propose key conceptualizations that can guide instruction when using simulations and repeated sampling for drawing inferences.


School of Education

Document Type

Journal Article

Access Rights

ERA Access

Access may be restricted.