mathematics education in the margins

Proceedings of the 38th Annual Conference of the Mathematics Education Research Group of Australasia

Edited by Margaret Marshman, Vince Geiger & Anne Bennison
Contents

Preface .. 3
MERGA38 Reviewers.. 4

KEYNOTES

Preamble to the Annual Clements/Foyster Lecture .. 13
Mathematics Education as a Field of Research: Have We Become Too Comfortable? 14
 Tom Lowrie
Researching and Doing Professional Development Using a Shared Discursive Resource and an
Analytic Tool... 25
 Jill Adler
Exploring a Structure for Mathematics Lessons that Foster Problem Solving and Reasoning...... 41
 Peter Sullivan, Nadia Walker, Chris Borcek & Mick Rennie

Practical Implications Award

Teacher Actions to Facilitate Early Algebraic Reasoning... 58
 Jodie Hunter

Research Papers

The challenge of supporting a beginning teacher to plan in primary mathematics...................... 69
 Judy Bailey
Contemplating symbolic literacy of first year mathematics students.. 77
 Caroline Bardini, Robyn Pierce & Jill Vincent
Problematising Mathematics Education .. 85
 Andy Begg
Identity as an Embedder-of-Numeracy: Identifying ways to support teachers to embed numeracy
across the curriculum... 93
 Anne Bennison
Young Children’s Number Line Placements and Place-Value Understanding................................ 101
 Brenda Bicknell & Jenny Young-Loveridge
The Role of Cultural Capital in Creating Equity for Pasifika Learners in Mathematics.............. 109
 Trevor Bills, Roberta Hunter
The importance of praxis in financial literacy education: An Indigenous perspective 117
 Levon Blue, Peter Grootenboer & Mark Brimble
Coming to do Mathematics in the Margins ... 125
 Raymond Brown & Trevor Redmond
“You play on them. They’re active.” Enhancing the mathematics learning of reluctant teenage
students ... 133
 Nigel Calder & Anthony Campbell
CAS or Pen-and-paper: Factors that Influence Students’ Choices.. 141
 Scott Cameron & Lynda Ball
The Language Used to Articulate Content as an Aspect of Pedagogical Content Knowledge ... Helen Chick

Specialised Content Knowledge: Evidence of Pre-service teachers’ Appraisal of Student Errors in Proportional Reasoning ... Mohan Chinnappan & Bruce White

Learning from Lessons: Studying the Construction of Teacher Knowledge Catalysed by Purposefully-designed Experimental Mathematics Lessons ... Doug Clarke, David Clarke, Anne Roche & Man Ching Esther Chan

Inclusive Practices in the Teaching of Mathematics: Supporting the Work of effective primary teachers ... Barbara Clarke & Rhonda Faragher

Supporting Students to Reason About the Relative Size of Proper and Improper Fractions .. Jose Luis Cortina & Jana Visnovska

Proportional Reasoning as Essential Numeracy .. Shelley Dole & Annette Hilton

A Case Study of the Pedagogical Tensions in Teacher’s Questioning Practices When Implementing Reform-Based Mathematics Curriculum in China .. Lianchun Dong, Wee Tiong Seah & David Clarke

Improving the Effectiveness of Mathematics Teaching through Active Reflection .. Kerryn Driscoll

Promoting Teacher Growth through Lesson Study: A Culturally Embedded Approach ... Marlon Ebaeguin

The Self-Efficacy of students with Borderline, Mild and Moderate Intellectual Disabilities and their Achievements in Mathematics ... Agbon Enoma & John Malone

Identifying Core Elements of Argument-Based Inquiry in Primary Mathematics Learning .. Jill Fielding-Wells

STEM Education: What Does Mathematics Have To Offer? .. Noleine Fitzallen

The Challenge for Non-first-language-English Academic Publishing in English Language Research Outlets .. Vince Geiger & Rudolf Straesser

The Impact of Let’s Count on Children’s Mathematics Learning .. Ann Gervasoni, Bob Perry & Linda Parish

Comparing the Development of Australian and German 7-Year-Old and 8-Year-Old’s Counting and Whole Number Learning .. Ann Gervasoni & Andrea Peter-Koop

Learning at the Boundaries .. Merrilyn Goos

The Practice of ‘Middle Leading’ in Mathematics Education .. Peter Grootenboer, Christine Edwards-Groves & Karin Rönnerman

Teaching Computation in Primary School without Traditional Written Algorithms .. Judy Hartnett

Calculating for probability: “He koretake te rima” (Five is useless) .. Ngārewa Hāwera & Merilyn Taylor
Students’ Relationships with Mathematics: Affect and Identity .. 301
Naomi Ingram

Using Alternative Multiplication Algorithms to ‘Offload’ Cognition .. 309
Dan Jazby & Cath Pearn

Successful Mathematics Lessons in Remote Communities: A Case Study of Balargo 317
Robyn Jorgensen

Differentiated Success: Combining Theories to Explain Learning .. 325
Robyn Jorgensen & Kevin Larkin

The Mathematics Instructional Leader: What a Difference Crucial Conversations Make 333
Janeen Lamb, Carmel Diezmann & Jillian Fox

The Search for Fidelity in Geometry Apps: An Exercise in Futility? .. 341
Kevin Larkin

Pre-service teachers and numeracy in and beyond the classroom ... 349
Gilah C Leder, Helen J Forgasz, Natalie Kalkhoven & Vince Geiger

Gender Differences in Mathematics Attitudes in Coeducational and Single Sex Secondary Education ... 357
Kester Lee & Judy Anderson

Developing a Theoretical Framework to Assess Taiwanese Primary Students’ Geometric Argumentation ... 365
Tsu-Nan Lee

Starting a Conversation about Open Data in Mathematics Education Research 373
Tracy Logan

A Snapshot of Young Children’s Mathematical Competencies: Results from the Longitudinal Study of Australian Children .. 381
Amy MacDonald & Colin Carmichael

Examining PCK in a Senior Secondary Mathematics Lesson .. 389
Nicole Maher, Tracey Muir & Helen Chick

Teacher’s Scaffolding over the Year to Develop Norms of Mathematical Inquiry in a Primary Classroom .. 397
Katie Makar, Arthur Bakker & Dani Ben-Zvi

Middle Years Students Influencing Local Policy .. 405
Margaret Marshman

Early Years Teachers’ Perspectives on Teaching through Multiple Metaphors and Multimodality ... 413
Paula Mildenhall

Young Indigenous Students’ Engagement with Growing Pattern Tasks: A Semiotic Perspective 421
Jodie Miller

Professional Knowledge Required when Teaching Mathematics for Numeracy in the Multiplicative Domain .. 429
Judith Mills

Determining a Student’s Optimal Learning Zone in Light of the Swiss Cheese Model 437
Patricia Morley & Simone Zmood

Student and Parent Perspectives on Fipping the Mathematics Classroom 445
Tracey Muir
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority and Agency in Young Children’s Early Number Work: A Functional Linguistic Perspective</td>
<td>453</td>
</tr>
<tr>
<td>Carol Murphy</td>
<td></td>
</tr>
<tr>
<td>Examples in the Teaching of Mathematics: Teachers’ Perceptions</td>
<td>461</td>
</tr>
<tr>
<td>Lay Keow Ng & Jaguthsing Dindyal</td>
<td></td>
</tr>
<tr>
<td>How Inquiry Pedagogy Enables Teachers to Facilitate Growth Mindsets in Mathematics Classrooms</td>
<td>469</td>
</tr>
<tr>
<td>Mia O’Brien, Katie Makar, Jill Fielding-Wells & Jude Hillman</td>
<td></td>
</tr>
<tr>
<td>Challenging the Mindset of Sammy: A Case Study of a Grade 3 Mathematically Highly Capable Student</td>
<td>477</td>
</tr>
<tr>
<td>Linda Parish</td>
<td></td>
</tr>
<tr>
<td>Facebook as a Learning Space: An Analysis from a Community of Practice Perspective</td>
<td>485</td>
</tr>
<tr>
<td>Sitti Maesuri Patahuddin & Tracy Logan</td>
<td></td>
</tr>
<tr>
<td>Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking</td>
<td>493</td>
</tr>
<tr>
<td>Catherine Pearn & Max Stephens</td>
<td></td>
</tr>
<tr>
<td>Mentoring to Alleviate Anxiety in Pre-Service primary mathematics Teachers: an orientation towards improvement rather than evaluation</td>
<td>501</td>
</tr>
<tr>
<td>Timothy Perkins</td>
<td></td>
</tr>
<tr>
<td>Spatial Visualisation and Cognitive Style: How Do Gender Differences Play Out?</td>
<td>508</td>
</tr>
<tr>
<td>Ajay Ramful & Tom Lowrie</td>
<td></td>
</tr>
<tr>
<td>The Practice of Teacher Aides in Tasmanian Primary Mathematics Classrooms</td>
<td>516</td>
</tr>
<tr>
<td>Robyn Reaburn</td>
<td></td>
</tr>
<tr>
<td>Qualitative Facets of Prospective Elementary Teachers’ Diagnostic Proceeding: Collecting and Interpreting in One-on-one Interviews</td>
<td>524</td>
</tr>
<tr>
<td>Simone Reinhold</td>
<td></td>
</tr>
<tr>
<td>Describing the nature and effect of teacher interactions with students during seat work on challenging tasks</td>
<td>532</td>
</tr>
<tr>
<td>Anne Roche & Doug Clarke</td>
<td></td>
</tr>
<tr>
<td>Teachers’ talk about Robotics: Where is the Mathematics?</td>
<td>540</td>
</tr>
<tr>
<td>Annie Savard & Kate Highfield</td>
<td></td>
</tr>
<tr>
<td>Teaching Statistics in Middle School Mathematics classrooms: Making Links with Mathematics but Avoiding Statistical Reasoning</td>
<td>547</td>
</tr>
<tr>
<td>Annie Savard & Dominic Manuel</td>
<td></td>
</tr>
<tr>
<td>Context counts: The potential of realistic problems to expose and extend social and mathematical understandings</td>
<td>555</td>
</tr>
<tr>
<td>Carly Sawatzki</td>
<td></td>
</tr>
<tr>
<td>Theorising about Mathematics Teachers’ Professional Knowledge: The Content, Form, Nature, and Course of Teachers’ Knowledge</td>
<td>563</td>
</tr>
<tr>
<td>Thorsten Scheiner</td>
<td></td>
</tr>
<tr>
<td>Understanding Geometric Ideas: Pre-service Primary Teachers’ Knowledge as a Basis for Teaching</td>
<td>571</td>
</tr>
<tr>
<td>Rebecca Seah</td>
<td></td>
</tr>
<tr>
<td>Mathematical Language Development and Talk Types in Computer Supported Collaborative Learning Environments</td>
<td>579</td>
</tr>
<tr>
<td>Duncan Symons & Robyn Pierce</td>
<td></td>
</tr>
<tr>
<td>The Individual Basic Facts Assessment Tool</td>
<td>587</td>
</tr>
<tr>
<td>Sandi Tait-McCutcheon & Michael Drake</td>
<td></td>
</tr>
</tbody>
</table>
Affording and Constraining Local Moral Orders in Teacher-Led Ability-Based Mathematics Groups .. 595
 Sandi Tait-McCutcheon, Joanna Higgins, Mary Jane Shuker & Judith Loveridge

Exploring relationship between scientific reasoning skills and mathematics problem solving ... 603
 Nor‘ain Mohd Tajudin & Mohan Chinnappan

Developing Adaptive Expertise with Pasifika Learners in an Inquiry Classroom 611
 Zain Thompson & Jodie Hunter

Getting out of Bed: Students’ Beliefs ... 619
 Jane Watson & Rosemary Callingham

Improving Student Motivation and Engagement in Mathematics Through One-to-one Interactions ... 627
 Jennifer Way, Amelia Reece, Janette Bobis, Judy Anderson & Andrew Martin

A Cross-cultural Comparison of Parental Expectations for the Mathematics Achievement of their Secondary School Students ... 635
 Daya Weerasinghe & Debra Panizzon

“I was in year 5 and I failed maths”: Identifying the Range and Causes of Maths Anxiety in first year Pre-service Teachers ... 643
 Sue Wilson

Enhancing Mathematics (STEM) Teacher Education in Regional Australia: Pedagogical Interactions and Affect ... 651
 Geoff Woolcott & Tony Yeigh

Mathematics, Programming, and STEM ... 659
 Andy Yeh & Vinesh Chandra

RESEARCH PRESENTATION ABSTRACTS

Laying the Foundation for Proportional Reasoning ... 668
 Ann Downton

The Development and Evaluation of an Individualised Learning Tool for Mathematics students with Intellectual Disability: IMPELS ... 668
 Agbon Enoma & John Malone

Capturing Mathematical Learning in an Inquiry Context: There are Some Things Not Easily Measured ... 669
 Kym Fry

Teacher Professional Growth through using a Critical Mass Mentoring System: Effective Whole School Teacher Professional Development .. 669
 Judy Hartnett & Jim Midgley

Anatomy of a Mathscast .. 670
 Carola Hobohm & Linda Galligan

An Exploration of Strategies That Teachers Use When Teaching Beginning Algebra 670
 Christina Lee & Christine Ormond

Factors Influencing Social Process of Statistics Learning within an IT Environment 671
 Ken W. Li & Merrilyn Goos

Identifying categories of Pre-service Teachers’ Mathematical Content Knowledge 671
 Sharyn Livy
Language and Mathematics: Exploring a New Model to Teach in Bi/Multilingual Mathematics
Charly Muke ... 672
Exploring the Influence of Early Numeracy Understanding Prior to School on Mathematics
Achievement at the End of Grade 2... 673
Andrea Peter-Koop & Sebastian Kollhoff
An Irish Response to an International Concern: Challenges to Mathematics Teaching 673
Lisa O’Keeffe, Olivia Fitzmaurice & Patrick Johnson
An Analysis of Modelling Process based on McLuhan’s Media Theory: Focus on Constructions by
Media in Cases of Using Geoboard.. 674
Hiro Ozasa
The Knowledge Dimension of Revised Bloom’s Taxonomy for Integration 674
Farzad Radmehr, Robin Averill & Michael Drake
Developing an analysing tool for dynamic mathematics-related student interaction regarding
affect, cognition and participation... 675
Laura Tuohilampi
Thinking Strategies Used by 7th-Grade Students in Solving Number Sense Problems 675
Palanisamy Veloo & Parmjit Singh

ROUND TABLE DISCUSSION ABSTRACTS
Working Across Disciplinary Boundaries in Pre-service Teacher Education.............................. 677
Merrilyn Goos, Judy Anderson, Jo Balatti, Kim Beswick, Tricia Forrester & Jenni Way
Promoting Positive Emotional Engagement in Mathematics of Prospective Primary Teachers.. 678
Joanna Higgins & Janette Bobis
Senior Secondary Students’ Pre-calculus and Calculus Understanding.................................... 679
Michael Jennings & Peter Adams
Investigating Mathematical Inquiry.. 680
Katie Makar, Jill Fielding-Wells, Kym Fry, Sue Allmond & Jude Hillman

SHORT COMMUNICATION ABSTRACTS
A Problem Solving Lesson: Pre-service Teachers Initiation to Lesson Study............................. 682
Jaguthsing Dindyal
Teachers’ Beliefs about Knowledge of Content and Students and its Effect on their Practice.... 682
Vesife Hatisaru
Exploring Students’ Views on using iPads in Mathematics.. 683
Janelle Hill
Mapping school students’ aspirations for STEM careers.. 683
Kathryn Holmes, Adam Lloyd, Jenny Gore & Max Smith
Breaking down Barriers... 684
Peter Howley
Building upon the Language Model of Mathematics... 684
Harry Kanasa & Kevin Larkin
The Australian Mathematics Competition: What’s the Score? ... 685
Andrew Kepert & Mike Clapper
A Focus Question Approach to the Teaching of Mathematics

John Ley

Promoting the Development of Foundation Content Knowledge in all Primary Pre-service Teachers

Chris Linsell, Naomi Ingram & Megan Anakin

Paternal influence on school students’ aspirations for STEM careers

Adam Lloyd, Jenny Gore & Max Smith

Understanding Mathematics: Teacher Knowledge, Task Design and Evaluating Students’ Mathematical Reasoning

Christine Mae, Janette Bobis & Jenni Way

The Pattern and Structure of the Australian Curriculum—Mathematics

Catherine McCluskey, Joanne Mulligan & Michael Mitchelmore

Mathematical Thinking in a Context of ‘General Thinking’: Implications for Mathematics Education

Corinne Miller, Geoff Woolcott & Christos Markopoulos

Conceptual Connectivity in Mathematics

Joanne Mulligan & Geoff Woolcott

Primary-Middle Pre-Service Teachers reported use of the Mathematics Textbook

Lisa O’Keeffe

Examining a Students’ Resource for Reconstructing the Limit Concept at Need: A Structural Abstraction Perspective

Thorsten Scheiner & Márcia M. F. Pinto

Pre-service Teachers’ Views on Mathematics Homework Practices

Sven Trenholm & Mohan Chinnappan

Teaching out-of-field: Meanings, representations and silences

Colleen Vale, Linda Hobbs, Christopher Speldewinde & Zahra Parvanehnezadshirazian

Promoting Financial Literacy in Pre-service Teacher Education through On-line Modules

Leigh Wood, Joanne Mulligan, Carmel Coady, Michael Cavanagh & Damian Bridge
Theorising about Mathematics Teachers’ Professional Knowledge: The Content, Form, Nature, and Course of Teachers’ Knowledge

Thorsten Scheiner

University of Hamburg, Germany
<thorsten.scheiner@uni-hamburg.de>

The guiding philosophy of this theoretical work lays in the argument that mathematics teachers’ professional knowledge is the integration of various knowledge facets derived from different sources including teaching experience and research. This paper goes beyond past trends identifying what the teachers’ knowledge is about (content) by providing new perspectives, in particular, on how the knowledge is structured and organised (form), on what teachers’ draw on their knowledge (source), and whether the knowledge is stable and coherent or contextually-sensitive and fluid (nature).

Introduction

The guiding philosophy of this work is the assumption that teachers draw on a wide range of sources as they do their work, using and transforming these in various ways for the purposes of their teaching and for the needs of their students. Thus, one of the key theoretical concerns arising in the realm of teachers’ professional learning and development is the question on which sources teachers draw on their work. Researchers have reflected on resources (including knowledge), identifying them, among orientations (including beliefs) and goals, as critically important determinants in what teachers do, and why they do it (Schoenfeld, 2010). The sources of particular significance for the teaching enterprise are, from the author’s perspective: (a) knowledge; (b) teaching; and (c) research (see Figure 1). These three sources are viewed as playing a complementary role in relation to each other; for instance, research can inform and enhance teachers’ knowledge about particular instructional strategies, as well as equipping the teacher for the rich reflection required in professional judgement. At the same time, research itself can be enriched through greater insights into the challenges and complexities of educational practice.

The last few decades have produced a considerable body of literature that describes, theorises, and conceptualises knowledge as a source for teachers doing their work. Shulman (1987), for instance, identified three dimensions of knowledge needed for teaching; namely content knowledge (knowledge of the subject matter per se to be taught), pedagogical knowledge (knowledge of how to teach in general terms), and pedagogical content knowledge (knowledge of how to teach that is specific to what is to be taught). In this and further work, Shulman (1987) makes clear that the knowledge base necessary for teaching comprises teachers’ knowledge of content in the domain being taught, knowledge of learners’ common conceptions, and difficulties that learners may have when learning particular content, and knowledge of pedagogical strategies that can be used to address learners’ needs in particular classroom circumstances. However, less emphasis has been put on teachers’ knowledge of students’ learning. To put it in other words, what is missing in Shulman’s (1987) contribution on various dimensions of teachers’ knowledge, as argued in this work, is teachers’ knowledge of learning, in particular, teachers’ knowledge of theoretical frameworks of knowing and learning. However, knowledge of approaches to, and research on, learning mathematics is taken as a crucial component of mathematics teachers’ resources, and a particular focus of the theoretical work reported here.

Another source of teachers’ professionalisation is the personal experience of being taught, or of teaching. In analogy to phenomenological primitives arising from experience with the physical world as described in detail by diSessa situated in his knowledge in pieces framework (e.g., diSessa, 1993), pedagogical primitives arise from experiences of being taught or of teaching. They provide powerful, mental resources useful for sense-making in the education instructional context, formed through a process in which individual teacher’s ways of teaching are strongly shaped by their personal experience of being taught or of teaching. Researchers may refer to this as craft knowledge or practical knowledge to distinguish it from what others have referred to as didactical knowledge or mathematics education knowledge, in particular, knowledge derived from research reported in the field. Knowledge derived from research (in short, research-based knowledge) is considered as a further source of teachers’ professionalisation. In particular, research-based knowledge on: (a) students’ ways of understanding and thinking; (b) ways of learning mathematics; and (c) ways of teaching particular mathematical concepts are viewed as providing a rich source for teachers’ doing their work. Teachers need to engage with research, in the sense of keeping up to date with the latest developments and findings in research on students’ ways of thinking, understanding, and learning, and on effective instructional techniques to inform their pedagogical content knowledge. In addition to the latest research findings, teachers should become familiar with the implications of this research for their day-to-day practice, and for education policy and practice more broadly. With this perspective, research is viewed as a key source of teachers’ broader professional identity, one that reinforces other pillars of teacher quality: notably teachers’ knowledge base and teaching experience.

Figure 1: Sources of teachers’ professionalisation

It is this conceptualisation of sources of teachers’ professionalisation that enables an elaboration of knowledge resources for teaching mathematics. Consequentially, in contrast to any narrow or simplified view, the idea of teachers’ professional knowledge essentially conveys the need to integrate knowledge from various sources including knowledge derived through teaching experience/practice (pedagogical primitives) and research (research-based knowledge and instructional theoretical frameworks).
Lessons from Past Approaches Conceptualising Mathematics Teachers’ Knowledge

Over the past decades, a range of research work on conceptualising teachers’ knowledge has been developed often taking Shulman’s initial work as a point of departure, a considerable number of which has been located in mathematics education research (e.g., Adler & Davis, 2006; Ball, Thames, & Phelps, 2008; Blömeke, Kaiser, & Lehman, 2010; Even, 1990; Ma, 1999; Fennema & Franke, 1992; Kilpatrick et al., 2006; Rowland et al., 2005; Schoenfeld & Kilpatrick, 2008), and how such knowledge can be operationalised and measured (Baumert et al., 2010; Blömeke et al., 2014; Hill et al., 2007; Schilling et al., 2007; Tatto et al., 2008, 2012). Crucial lessons we have learned from these and related work on conceptualising mathematics teachers’ knowledge have been identified and described elsewhere (Scheiner, 2015). In short, Shulman’s (1986, 1987) conceptualisation of domains of teachers’ knowledge, in particular, subject matter knowledge (SMK) and pedagogical content knowledge (PCK), has been made specific to teaching mathematics. The distinction between SMK and PCK, although being ambitious in empirical investigations, continue to be widely used, in particular since it is considered as a useful tool in describing teachers’ knowledge for research purposes and in devising pre-service teachers’ and professional development programs. The multidimensional nature of mathematics teachers’ knowledge has been demonstrated by further refining the categories SMK and PCK and accentuating sub-dimensions that are specific for the purposes of teaching mathematics, such as describing and conceptualising a particular kind of mathematical content knowledge considered as unique for teaching mathematics.

In this work, the author wants to point to a further aspect that is about the dominating and guiding idea of most of the approaches on conceptualising mathematics teachers’ knowledge developed in the past, namely the idea about teachers’ unpacking of mathematics content in ways accessible for their students. In doing so, past approaches have centred their focus on the mathematics content; making the mathematics content a point of departure. Approaches guided by this philosophy often use the notion of mathematical knowledge for teaching in describing the teachers’ knowledge base. From the author’s perspective, the use of the notion of mathematical knowledge for teaching is insufficient since it seems not to capture other dimensions besides the subject content. Thus, this work calls for using the notion of knowledge for teaching mathematics including an epistemological, a cognitive, and a didactical dimension in addition to the subject content dimension. In doing so, it is intended to extend the current perspective on teachers’ knowledge in the sense of going beyond a more or less purely content perspective by taking into account several other perspectives important in in this issue.

Conceptualising Mathematics Teachers’ Knowledge: Past Trends and New Perspectives

In the past, the literature concentrated its focus on what the teachers’ knowledge is about. In doing so, the literature limited its focus on the content teachers do or should possess. Research has made progress in identifying various facets of mathematics teachers’ knowledge arguing that teachers’ subject matter knowledge is about substantive and syntactic structures of the discipline (Schwab, 1978); and mathematics teachers’ content knowledge, in particular, seems to be about ways of understanding and ways of thinking (Harel, 2008), or school mathematical knowledge and academic content knowledge (Bromme, 1994), among others. Mathematics teachers’ knowledge, as argued in the
Scheiner

literature, is about the epistemological foundations of mathematics and mathematics learning (see, Bromme, 1994), students’ cognitions (Fennema & Franke, 1992), in particular, knowledge of students’ common conceptions (see Shulman & Sykes, 1986), knowledge of students’ cognitive difficulties involved in concept construction (Harel, 2008), and the interpretation of students’ emerging thinking (Ball et al., 2008), as well as “the most useful ways of representing and formulating the subject that make it comprehensible to others” (Shulman, 1986, p. 9), including teachers’ illustrations and alternative ways of representing concepts (and the awareness of the relative cognitive demands of different topics) (Rowland et al., 2005) and knowledge of the design of instruction (Ball et al., 2008), among others.

However, what seems to be missing in the current landscape on various approaches of conceptualising mathematics teachers’ knowledge are efforts in going beyond what the knowledge for teaching mathematics is about by taking into account: (1) how the knowledge is structured and organised; (2) on which sources teachers’ draw on their knowledge; and (3) whether the knowledge is stable and coherent or contextually-sensitive and fluid. In short, the major issues that need better resolution if we are to understand teachers’ acquisition of an integrated knowledge base are questions concerning: (1) the form; (2) the source; and (3) the nature of mathematics teachers’ knowledge.

The Form of Teacher Knowledge

The initial point in this issue is the assumption that examining teacher expertise may help to advance our understanding of what makes the knowledge for teaching specialised since expert teachers are considered as focal elements in the movement towards excellence in education (Sternberg & Horvath, 1995). Findings in research on expert teachers, and, in particular, on expert teachers’ knowledge show that the concept of domain-specific knowledge structures is vital. Among various differences, Sternberg and Horvath (1995) consider knowledge as “perhaps the most fundamental difference between experts and novices” (p. 10). The same authors conclude that research findings indicate that an expert in the domain of teaching differs from a novice not only in the amount of subject matter knowledge and pedagogical knowledge but also in the organisation of their domain-relevant knowledge.

Magnusson, Krajcik, and Borko (1999) illustrate one way (among several possible other ways) to think about the interaction of the domains of knowledge in the development of pedagogical content knowledge. They suppose that the knowledge bases (subject matter, pedagogical, and contextual knowledge) may unequally influence the development of pedagogical content knowledge due to differences in the amount of knowledge in each domain. However, taking the research findings on expert teachers’ knowledge into account, it may be suggested that after a certain amount of subject matter knowledge, pedagogical knowledge, or contextual knowledge these knowledge bases do not have a higher relative influence on PCK. Rather, as shown in Figure 2a, it is not merely the amount of knowledge in each knowledge domain (subject matter knowledge, pedagogical knowledge, or contextual knowledge) that matters most but the degree of integration of the knowledge bases. Expert teachers, from this point of view, would show a greater overlap, symbolising increased integration of the three knowledge bases, than novice teachers (see, Figure 2b).
The Source of Teacher Knowledge

A further aspect in conceptualising the knowledge specialised for the purposes of teaching mathematics is to examine the constituent knowledge bases that influence this particular kind of knowledge. In the past, Shulman’s pedagogical content knowledge was considered almost always as the only form of knowledge unique for the purposes of teaching. In Shulman (1987), pedagogical content knowledge was defined as “that special amalgam of content and pedagogy … It represents the blending of content and pedagogy ” (Shulman, 1987, p. 8, italics added). However, this perspective is problematic for many reasons, including the fact that the amalgamation of content and pedagogy leads not only to a too broad category but lacks in both subject- and context-specificity. Still, the mathematics education research community has identified specific dimensions built upon Shulman’s initial work on PCK. The various refinements of PCK seem to converge in three dimensions, namely: (1) knowledge of students’ mathematical understandings (KSU); (2) knowledge of learning mathematics (KLM); and (3) knowledge of teaching
Scheiner

In this work, knowledge of students’ mathematical understanding (KSU), knowledge of learning mathematics (KLM), and knowledge of teaching mathematics (KTM), together with mathematical content knowledge per se (MCK per se) and mathematical content knowledge for teaching (MCK for teaching) build the knowledge bases that constitute the particular kind of knowledge that is considered as specialised for the purposes of teaching mathematics. In doing so, past and current approaches in research on mathematics teachers’ knowledge are turned on their heads in the sense of taking the identified (and refined) knowledge dimensions as building blocks for the construct of knowledge for teaching mathematics.

The Nature of Mathematics Teacher Knowledge

Certainly, approaches mentioned above do not converge on a clear conceptualisation of PCK. Indeed they portray differences of opinion and a lack of clarity about the nature of PCK and its development. Research approaches consider PCK as a knowledge dimension on either: (1) a cross-subject level; (2) a discipline-specific level; (3) a domain-specific level; or (4) a topic-specific level. Some researchers also hold the view that PCK can be considered as a knowledge dimension regarding several levels. In recent studies, PCK seems more often to refer to a broad and general form of knowledge, sometimes even losing its discipline-specificity. Fernández-Balboa and Stiehl (1995), for instance, analyse PCK in professors across several fields, including biology, business, and education, among others. However, in line with Hashew (2005), the author argues that PCK seems to have lost one of its most important characteristics, namely its topic-specificity. The work by Smith, diSessa, and Roschelle (1993), for instance, reminds us that knowledge is concept-specific and highly context-sensitive. For instance, the knowledge in pieces framework developed by diSessa calls for viewing knowledge as microstructures coming in a loose structure of quasi-independent, atomistic knowledge pieces.

Final Remarks: Future Directions

Although the various frameworks and models on the construct of mathematics teachers’ knowledge have provided crucial insights on what mathematics teachers’ knowledge is about, several of the discipline-specific frameworks represent conceptualisations of mathematics teachers’ knowledge by a very general approach that seem ad hoc. The author, by contrast, does not believe in the existence of a general framework on teachers’ knowledge but rather thinks that in investigating the form and nature of teachers’ knowledge various frameworks may be discovered, which will be quite specific to particular mathematical concepts and individuals.

The author calls for paying attention to investigating what in this paper is called knowledge for teaching mathematics considered as a pool of personal and private constructed pieces of knowledge that have been transformed along a variety of knowledge bases identified by previous research investigating the multidimensionality of teachers’ knowledge. In more detail, this work emphasises the view that teachers’ professional knowledge specialised for teaching mathematics is the repertoire of knowledge atoms that have been transformed along: (1) knowledge of students’ mathematical understanding (KSU); (2) knowledge of learning mathematics (KLM); and (3) knowledge of teaching mathematics (KTM), taking (4) mathematical content knowledge per se (MCK per se) and
(5) mathematical content knowledge for teaching (MCK for teaching) as the cornerstones (see, Figure 3). Notice that: (i) the notion of transformation implies that the constituent knowledge bases are inextricably combined into a new form of knowledge that is more powerful than the sum of its parts (form); (ii) in contrast to Shulman and his proponents’ work, it is KSU, KLM, and KTM, together with MCK per se and MCK for teaching that build the knowledge dimensions that serve as the constituent knowledge bases for teaching mathematics (source); (iii) the notion of knowledge atom indicates that knowledge is of a microstructure, highly context-sensitive, and concept-specific and has to be considered as of a fine-grained size (nature); and (iv) The notion of repertoire indicates that knowledge is personal and private and that teacher education programs can only provide (as good as possible) rich resources for building up a fruitful repertoire of knowledge atoms.

Figure 3: The knowledge atom

Acknowledgements

I wish to thank Gabriele Kaiser, Chris Rasmussen, and Alan H. Schoenfeld for their helpful comments in discussions on several key ideas put forward in this paper. The opinions, findings, and conclusions expressed in this paper are those of the author and do not necessarily reflect the views of the researchers mentioned.

References

Scheiner

