TABLE OF CONTENTS

VOLUME 5

RESEARCH REPORTS

PR – Z

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMOCRATIZING MATHEMATICAL CREATIVITY THROUGH KOESTLER’S BISOCIATION THEORY</td>
<td>Vrunda Prabhu, Bronislaw Czarnocha</td>
<td>1</td>
</tr>
<tr>
<td>ASSESSING TEACHERS’ PROFOUND UNDERSTANDING OF EMERGENT MATHEMATICS IN A MASTERS COURSE</td>
<td>Armando Paulino Preciado-Babb</td>
<td>9</td>
</tr>
<tr>
<td>MENTAL MATHEMATICS AND OPERATIONS ON FUNCTIONS</td>
<td>Jérôme Proulx</td>
<td>17</td>
</tr>
<tr>
<td>USING PRACTICAL WORKSHEET TO RECORD AND EXAMINE METACOGNITIVE STRATEGIES IN PROBLEM SOLVING</td>
<td>Khiok Seng Quek, Tin Lam Toh, Yew Hoong Leong, Foo Him Ho</td>
<td>25</td>
</tr>
<tr>
<td>FEATURES OF SUCCESSFUL CALCULUS PROGRAMS AT FIVE DOCTORAL DEGREE GRANTING INSTITUTIONS</td>
<td>Chris Rasmussen, Jessica Ellis, Dov Zazkis, David Bressoud</td>
<td>33</td>
</tr>
<tr>
<td>QUALITATIVE FACETS OF PROSPECTIVE ELEMENTARY TEACHERS’ DIAGNOSTIC COMPETENCE: MICRO-PROCESSES IN ONE-ON-ONE DIAGNOSTIC INTERVIEWS</td>
<td>Simone Reinhold</td>
<td>41</td>
</tr>
<tr>
<td>SOFYA KOVALEVSKAYA: MATHEMATICS AS FANTASY</td>
<td>Veda Roodal Persad</td>
<td>49</td>
</tr>
<tr>
<td>GRAPHING CALCULATOR SUPPORTED INSTRUMENTATION SCHEMES FOR THE CONCEPT OF DERIVATIVE: A CASE STUDY</td>
<td>Gerrit Roorda, Pauline Vos, Paul Drijvers, Martin Goedhart</td>
<td>57</td>
</tr>
<tr>
<td>A FRAMEWORK FOR THE ANALYSIS OF VALUES THROUGH A MATHEMATICAL LITERACY LENS</td>
<td>Sheena Rughubar-Reddy</td>
<td>65</td>
</tr>
<tr>
<td>WRITTEN REASONING IN PRIMARY SCHOOL</td>
<td>Silke Ruwisch, Astrid Neumann</td>
<td>73</td>
</tr>
</tbody>
</table>
LEARNING WITH INTERACTIVE ANIMATED WORKED-OUT EXAMPLES IN GROUPS OF TWO

Alexander Salle

IMPACT OF SINGLE STUDENT MATHEMATICAL FIELD EXPERIENCE ON ELEMENTARY TEACHERS OVER TIME

Amanda G. Sawyer, Yi Jung Lee

MAKING GENERALIZATIONS EXPLICIT: AN INFERENTIAL PERSPECTIVE ON CONCEPT-FORMATION OF VARIABLES

Florian Schacht, Stephan Hußmann

COGNITIVE PROCESSES UNDERLYING MATHEMATICAL CONCEPT CONSTRUCTION: THE MISSING PROCESS OF STRUCTURAL ABSTRACTION

Thorsten Scheiner, Márcia M. F. Pinto

TYPES OF ARGUMENTS WHEN DEALING WITH CHANCE EXPERIMENTS

Susanne Schnell

EXPLORING STUDENTS’ MENTAL MODELS IN LINEAR ALGEBRA AND ANALYTIC GEOMETRY: OBSTACLES FOR UNDERSTANDING BASIC CONCEPTS

Sven Schueler, Bettina Roesken-Winter

ARE INTEREST AND ENJOYMENT IMPORTANT FOR STUDENTS’ PERFORMANCE?

Stanislaw Schukajlow, André Krug

THE IMPACT OF LEARNING AND TEACHING LINEAR FUNCTIONS PROFESSIONAL DEVELOPMENT

Nanette Seago, Catherine Carroll, Tom Hanson, Steve Schneider

MATHEMATICS LEARNING IN MAINLAND CHINA, HONG KONG AND TAIWAN: THE VALUES PERSPECTIVE

Wee Tiong Seah, Qiaoping Zhang, Tasos Barkatsas, Huk Yuen Law, Yuh-Chyn Leu

IS ELIMINATING THE SIGN CONFUSION OF INTEGRAL POSSIBLE? THE CASE OF CAS SUPPORTED TEACHING

Eyup Sevimli, Ali Delice

THE IMPACT OF A TEACHER DEVELOPMENT PROGRAM ON 7TH GRADERS’ LEARNING OF ALGEBRA

Sheree Sharpe, Analúcia D. Schliemann

EXPLORING ‘WHAT JAPANESE STUDENTS FIND IMPORTANT IN MATHEMATICS LEARNING’ BASED ON THE THIRD WAVE PROJECT

Yusuke Shinno, Chikara Kinone, Takuya Baba
STUDENTS’ SELF-ASSESSMENT OF CREATIVITY: BENEFITS AND LIMITATIONS …… 177
 Atara Shriki, Ilana Lavy

PROSPECTIVE TEACHERS’ CONCEPTIONS ABOUT A PLANE ANGLE AND THE CONTEXT DEPENDENCY OF THE CONCEPTIONS……………………………………………….. 185
 Harry Silfverberg, Jorma Joutsenlahti

AN EMERGING THEORY FOR DESIGN OF MATHEMATICAL TASK SEQUENCES:
PROMOTING REFLECTIVE ABSTRACTION OF MATHEMATICAL CONCEPTS………….. 193
 Martin A. Simon

TWO STAGES OF MATHEMATICS CONCEPT LEARNING: ADDITIONAL APPLICATIONS IN ANALYSIS OF STUDENT LEARNING ……………………………………….. 201
 Martin A. Simon, Nicora Placa, Arnon Avitzur

NUMBER’S SUBTLE TOUCH: EXPANDING FINGER GNOSIS IN THE ERA OF MULTI-TOUCH TECHNOLOGIES …………………………………………………………… 209
 Nathalie Sinclair, David Pimm

WHY ANNA LEFT ACADEMIA ……………………………………………………………… 217
 Lovisa Sumpter

TONY’S STORY: READING MATHEMATICS THROUGH PROBLEM SOLVING ………….. 225
 Eng Guan Tay, Pee Choon Toh, Jaguthsing Dindyal, Feng Deng

MOTIVATING PROSPECTIVE ELEMENTARY TEACHERS TO LEARN
MATHEMATICS VIA AUTHENTIC TASKS………………………………………………….. 233
 Eva Thanheiser, Randolph A. Philipp, Jodi Fasteen

THE ROLE OF TEACHING DECISIONS IN CURRICULUM ALIGNMENT ………………. 241
 Mike Thomas, Caroline Yoon

WHEN UNDERSTANDING EVOKE APPRECIATION: THE EFFECT OF
MATHEMATICS CONTENT KNOWLEDGE ON AESTHETIC PREDISPOSITION…………… 249
 Hartono Tjoe

DESIGNING TASKS FOR CONJECTURING AND PROVING IN NUMBER THEORY …… 257
 Pee Choon Toh, Yew Hoong Leong, Tin Lam Toh, Foo Him Ho

USING AN EXPERIMENTAL FRAMEWORK OF KEY ELEMENTS TO PARSE
ONE-TO-ONE, TARGETED INTERVENTION TEACHING IN WHOLE-NUMBER
ARITHMETIC …………………………………………………………………………………. 265
 Thi L. Tran, Robert J. Wright
HOW UNDERGRADUATE STUDENTS MAKE SENSE OUT OF GRAPHS: THE CASE OF PERIODIC MOTIONS .. 273

Chrissavgi Triantafillou, Vasiliki Spiliotopoulo, Despina Potari

EXAMINING MATHEMATICS-RELATED AFFECT AND ITS DEVELOPMENT DURING COMPREHENSIVE SCHOOL YEARS IN FINLAND .. 281

Laura Tuohilampi, Markku S. Hannula, Anu Laine, Jari Metsämuuronen

MATHEMATICAL ACTIVITY IN EARLY CHILDHOOD: IS IT SO SIMPLE? 289

Marianna Tzekaki

CONCEPTUAL AND BRAIN PROCESSING OF UNIT FRACTION COMPARISONS: A COGNEURO-MATHED STUDY .. 297

Ron Tzur, Brendan E. Depue

ARGUMENTATION IN UNDERGRADUATE MATH COURSES: A STUDY ON PROBLEM SOLVING ... 305

Behiye Ubuz, Saygıın Dinçer, Ali Bülbü

LEARNING MATHEMATICS WITH PICTURE BOOKS ... 313

Marja van den Heuvel-Panhuizen, Iliada Elia, Alexander Robitzsch

IMPROVING REFLECTIVE ANALYSIS OF A SECONDARY SCHOOL MATHEMATICS TEACHERS PROGRAM ... 321

Yuly Marsela Vanegas, Joaquin Gimenez, Vicenç Font, Javier Díez-Palomar

EXPLORING THE FEASIBILITY AND EFFECTIVENESS OF ASSESSMENT TECHNIQUES TO IMPROVE STUDENT LEARNING IN PRIMARY MATHEMATICS EDUCATION ... 329

Michiel Veldhuis, Marja van den Heuvel-Panhuizen

CONNECTIONS AND SIMULTANEITY: ANALYSING SOUTH AFRICAN G3 PART-PART-WHOLE TEACHING .. 337

Hamsa Venkat, Anna-Lena Ekdahl, Ulla Runesson

PREDICTORS OF FUTURE MATHEMATICS TEACHERS’ READINESS TO TEACH: A COMPARISON OF TAIWAN, GERMANY, AND THE UNITED STATES ... 345

Ting-Ying Wang, Feng-Jui Hsieh, Shu-Jyh Tang

PROOF AS A CLUSTER CONCEPT .. 353

Keith Weber

STUDENTS’ USE OF GESTURE AND POSTURE MIMICRY IN DEVELOPING MUTUAL UNDERSTANDING .. 361

Kevin J. Wells
DISMANTLING VISUAL OBSTACLES TO COMPREHENSION OF 2-D SKETCHES DEPICTING 3-D OBJECTS .. 369
 Mirela Widder, Avi Berman, Boris Koichu

BAKHTINIAN DIALOGUE AND HEGELIAN DIALECTIC IN MATHEMATICAL AND PROFESSIONAL EDUCATION ... 377
 Julian Williams, Julie Ryan

MAPPING CONCEPT INTERCONNECTIVITY IN MATHEMATICS USING NETWORK ANALYSIS .. 385
 Geoff Woolcott, Daniel Chamberlain, Amanda Scott, Rassoul Sadeghi

INTERVENTION FOR MIDDLE SCHOOL STUDENTS WITH POOR ACHIEVEMENT IN MATHEMATICS .. 393
 Shirley M. Yates, Michelle Lockwood

VIABLE ARGUMENTS, CONCEPTUAL INSIGHTS, AND TECHNICAL HANDLES 401
 David Yopp

DEVELOPING YOUNG CHILDREN’S UNDERSTANDING OF PLACE-VALUE USING MULTIPLICATION AND QUOTITIVE DIVISION ... 409
 Jenny Young-Loveridge, Brenda Bicknell

ACTIVITIES THAT MATHEMATICS MAJORS USE TO BRIDGE THE GAP BETWEEN INFORMAL ARGUMENTS AND PROOFS ... 417
 Dov Zazkis, Keith Weber, Juan Pablo Mejia-Ramos

UNCOVERING TEACHER’S VIEWS VIA IMAGINED ROLE-PLAYING 425
 Rina Zazkis, Masomeh Jamshid Nejad

PRE-SERVICE ELEMENTARY TEACHERS’ MISCONCEPTIONS OF PROOF AND COUNTEREXAMPLES AND THEIR POSSIBLE INFLUENCES ON THEIR INSTRUCTIONAL DECISIONS .. 433
 Zulfiye Zeybek, Enrique Galindo

INDEX OF AUTHORS AND COAUTHORS VOLUME 5 ... 443
COGNITIVE PROCESSES UNDERLYING MATHEMATICAL CONCEPT CONSTRUCTION: THE MISSING PROCESS OF STRUCTURAL ABstraction

Thorsten Scheiner¹, Márcia M. F. Pinto²

¹University of Hamburg, Germany, ²Federal University of Rio de Janeiro, Brazil

The purpose of this paper is twofold: On the one hand, this work frames a variety of considerations on cognitive processes underlying mathematical concept construction in two research strands, namely an actions-first strand and an objects-first strand, that mainly shapes past and current approaches on abstraction in learning mathematics. This classification provides the identification of an often overlooked fundamental cognitive process, namely structural abstraction. On the other hand, this work shows a theory-driven and research-based approach illuminating the hidden architecture of cognitive processes involved in structural abstraction that gives new insights into an integrated framework on abstraction in learning mathematics. Based on our findings in empirical investigations, the paper outlines a theoretical framework on the cognitive processes taking place on mental (rather than physical) objects.

INTRODUCTION

Attributed as a crucial cognitive process in concept construction, abstraction has been the focus of many researchers in diverse research areas. Caused by both a confusion between abstraction and generalization and a characterization of abstraction aimed at decontextualization instead of recontextualization (see, van Oers, 1998), the term ‘abstraction’ has been almost “removed from the discourse of learning” (Sfard, 2008, p. 10). Though attention in research on abstraction has steadily declined since its peak in the pre-cognitive science era, some researchers still have advanced our all understanding on this issue by integrating ‘modern’ perspectives on past and current theories of learning in a broader theoretical frame. The Nested RBC Model of Abstraction originally described by Hershkowitz, Schwarz, and Dreyfus (e.g., 2001), for instance, provides an interesting conceptual undertaken in this area. The following pages present a further theoretical approach addressing the issue of abstraction in learning mathematics more broadly. In this work, the purpose is not to compete with other theories but to shed lights on a neglected cognitive process, namely on structural abstraction.

The proposed outline of the theoretical framework on structural abstraction results from (a) reconsidering Davydov’s (1972/1990) ascending from the abstract to the concrete from a dialectical point of view as expressed by Ilyenkov (1982), (b) taking fundamental findings in cognitive science and psychology into consideration, (c) embedding the framework into philosophical grounds, and undertaking a reanalysis and presentation of data obtained in a previous study (Pinto, 1998).
THEORETICAL BACKGROUND: TWO FUNDAMENTAL STRANDS IN RESEARCH ON ABSTRACITION IN LEARNING MATHEMATICS

Several approaches, partly distinct and partly overlapping, shape the theoretical landscape in mathematics education research on abstraction. Taking as poles of a wide spectrum, we can distinguish two strands of cognitive processes underlying concept construction, namely (1) an actions-first strand and an objects-first strand. The former has to do with processes of focusing on the actions on objects, in particular, individuals’ reflections on actions on known objects, grounded in Piaget’s work of ‘genetic epistemology’ that puts ‘actions’ in its heart with the underlying philosophy that knowledge is basically ‘operative’. The latter has to do with processes of focussing on the objects themselves, in particular, paying attention to the properties and structures inherent in those objects. As shown in Fig. 1, in both strands, the focus of attention may take place on physical objects (referring to the real world) or mental objects (referring to the thought world). Both strands capture the bulk of theoretical and practical work in past and recent years, however, it seems that the mathematics education research literature has nearly limited its focus on actions-first theoretical approaches. Research within the actions-first strand has made considerable progress considering both physical and mental objects as a point of departure in abstraction processes, while the focus of attention within the objects-first strand is limited, with few exceptions, to physical (instead of mental) objects. The current study considers cognitive processes underlying concept construction that take mental objects as a point of departure. Based on philosophical grounds and findings in psychology and cognitive science, we argue that structural abstraction is the key cognitive process in this issue. Furthermore, the paper outlines how an integrative framework might conceptualize the functional interplay of cognitive processes building the architecture of structural abstraction.

Actions-first Strand

Within this strand, two fundamental cognitive processes can be distinguished, namely (1) focussing on actions on physical objects and (2) focussing on actions on mental objects. The former refers to Piaget’s pseudo-empirical abstraction, while the latter refers to Piaget’s reflective abstraction. In his Recherches sur l’ abstraction réfléchissante, Piaget (1977/2001) describes pseudo-empirical abstraction as a process by which individuals discover in objects the properties that have been introduced into them by their own activity. In other words, the results covered by pseudo-empirical abstraction are read off from material objects but the observed properties are actually introduced into the objects by the subject’s activities. Yet, reflective abstraction is...
abstraction from the subject’s actions on objects, mostly from the coordination between these actions. Abstracting properties of an individual’s action coordinations is thought as the crucial function of Piaget’s reflective abstraction. In mathematics education, its highest impact is considered in its process of encapsulation (or reification). From Piaget’s reflective abstraction, Dubinsky et al (e.g., 1991) and his colleagues developed the APOS theory, describing the construction of concepts through the encapsulation of processes. Similar to the latter is reification – the main tenet of Sfard’s (e.g., 1991) framework emphasizing the cognitive process of forming a (structural) concept from an (operational) process. In the same line, Gray and Tall (e.g., 1994) describe this issue in terms of an overall progress from procedural thinking to proceptual thinking.

Objects-first Strand

Symmetrical to the actions-first strand, two fundamental cognitive processes can be distinguished within this strand, namely (1) focussing on physical objects and (2) focussing on mental objects. The former refers to empiricist approaches in the sense of seeing similarities among objects that fall under a particular concept. Empirical abstraction, in the sense of Piaget, describes a process when an individual abstracts sensory-motor properties from experiential situations. In Piaget’s (1977/2001) own words, empirical abstraction “draws its information from objects” (p. 317) but “is limited to recording the most obvious and global perceptual characteristics of objects” (p. 319). However, as argued by diSessa and Sherin (1998), though these abstraction processes (abstraction of dimensions that can be perceived) work well for category-like concepts, classical approaches (such as classifying or categorizing that are based on identifying commonalities from a set of specific exemplars) do not provide fertile insights into cognitive processes underlying concept construction in mathematics. An approach that goes beyond Piaget’s empirical abstraction has been developed by Mitchelmore and White (e.g., 2007). Drawing on Skemp’s (1986) conception on abstraction, their work on empirical abstraction in learning elementary mathematics describes abstraction in terms of the underlying structure rather than from superficial characteristics. This study of the underlying structure (of a mathematical concept) is considered as the heart of the objects-first strand in mathematics education research on abstraction. While Mitchelmore and White consider physical objects, the following subsection describes a cognitive process that takes mental objects as a point of departure.

STRUCTURAL ABSTRACTION

The notion of structural abstraction has been already used by Tall (2013) in the sense of a superordinate abstraction for empirical and platonic abstraction. Its “fundamental role […] throughout the full development of mathematical thinking” (ibid., p. 39) has been highlighted in Tall’s (2013) work *How humans learn to think mathematically*. As described in earlier work (Scheiner, 2013) and argued in this paper, structural abstraction goes beyond Tall’s conception of this particular kind of abstraction. The
crucial puzzle lies in the observation that structural abstraction has a dual nature, namely (1) ‘complementarizing’ the aspects and structure underlying specific objects falling under a particular mathematical concept and (2) facilitating the growth of coherent and complex knowledge structures. From this point of view, structural abstraction takes place both on the objects-structure and on the knowledge-structure (see, Figure 2).

From the objects-structure perspective, structural abstraction means (mentally) structuring the diverse aspects and the underlying structure of specific objects that have been particularized through placing the objects in a variety of different contexts. However, structuring the diverse aspects and the underlying structure of objects falling under a particular concept requires a concretizing process where the mathematical structure of a specific object is entered by looking at the object in relation with itself or with other objects that fall under the particular concept. Through placing objects into different specific contexts using a realistic model or perspective that provides theoretical structure in constructing a concept the meaningful components of the object may be highlighted. Models are, in this sense, intermediate in abstractness between ‘the abstract’ and ‘the concrete’. This means that at the start of a particular learning process a model is constituted that supports the ‘ascending from the abstract to the concrete’ as described by Davydov (e.g., 1972/1990). Davydov’s strategy of ascending from the abstract to the concrete draws the transition from the general to the particular in the sense that learners initially seek out the primary general ‘kernel’ and, in further progress, deduce multiple particular features of the object using that ‘kernel’ as their mainstay. The crucial aspect in this approach is Ilyenkov’s (1982) observation that “the concrete is realized in thinking through the abstract” (p. 37). Taking this view, models are embedded in goal structures and used by embodied agents. The key feature within the objects-structure perspective, however, lays in the idea that various specific objects
falling under a particular concept mutually complement each other, so that the abstractness of each of them, taken separately, is overcome. From this perspective, structural abstraction is a movement towards complementarity of diverse aspects creating conceptual unity among objects. This is in line with a dialectical perspective described by Ilyenkov (1982) and differs from empiricist approaches in Skemp (1986).

From the knowledge-structure perspective, structural abstraction, on the other hand, implies a process of restructuring the ‘pieces of knowledge’ constructed through the mentioned processes. Further, it also implies restructuring knowledge structures coming from current concept images, essential for the new concept construction. The cognitive function of structural abstraction is to facilitate the assembly of larger, more complex knowledge structures. The guiding philosophy here is rooted in the assumption that learners initially acquire mathematical concepts on their backgrounds of existing domain-specific conceptual knowledge through progressive integration of previous concept images or by the insertion of a new discourse alongside them. The crucial aspect of structural abstraction, from the knowledge-structure perspective, is that structural abstraction moves from simple to complex knowledge perspective, a movement with the aim of establishing highly coherent knowledge structures.

RESEARCH QUESTION AND METHOD

Which insights does the above outline on structural abstraction reveal for the analysis of an individual’s striving for making sense of a mathematical concept and which aspects may be illuminated that have been hidden? These questions are addressed by returning to an earlier study (Pinto, 1998) that identified mathematics undergraduates’ strategies of making sense of formal mathematics, which were not fully captured by “action-first” models of concept construction (e.g., Dubinsky, 1991). The original data collected undertook an inductive approach throughout two academic terms during students’ first year at a university in England. It consists of classroom observation field notes and transcriptions of semi-structural individual interviews that took place every two weeks with eleven students. From a cross-sectional analysis of three pairs of students, two prototypical strategies of making sense could be identified, namely ‘extracting meaning’ and ‘giving meaning’. Here the latter is our focus; through new lenses provided by the notion of ‘structural abstraction’ (Scheiner, 2013). Meanwhile, scrutinizing the old data contributes to the development of the very notion of structural abstraction itself. Due to the limited scope of the paper, we limit our focus on the case study of the learner Chris, who “consistently understood [the formal concepts] by just reconstructing it from the concept image” (Pinto, 1998, p. 301).

SELECTED FINDINGS

The above outline on structural abstraction provides indications to refine the characteristics of the ‘giving meaning’ strategy expressed by ‘reconstructing a formal object from the concept image’ (Pinto, 1998). If we return to examine the earlier study (Pinto, 1998), we find that several students take the formal definition of a mathematical
concept as just one amongst other related representations built in earlier experiences at school and out of school – a full meaning for considering the concept definition inside the concept image cell. The formal concept definition does not necessarily have primacy over the other representations but has a complementary power to give deeper insights into the ‘bigger picture’ of the concept. Moreover, we could identify some learners who ‘give meaning’ but simply ‘add’ the formal definition to their concept image. By merely juxtaposing pieces of knowledge, occasionally conflicting, the structure underlying the different facets of the concept may stay inconsistent, hampering the structural abstraction process. On the other hand, there are modes to succeed. Reasons for our claim rely in part on the analysis of Chris’ written formal definition of the limit of a sequence. We interpret that Chris firstly evokes a representation of a constructed object to start with, based upon his visual representation of a convergent sequence (see, Figure 3) and on his explanation of the meaning of the definition which starts as “... and you’ve got like the function there, and I think that it’s got the limit there...” (Chris, first interview). Yet, his written discourse seems to recall a specific representation of a sequence tending to L, as he starts “if \(a_n \) tends to L,” instead of “\(a_n \) tends to L” if’, as he was told in the lessons, self correcting and crossing out the first line. Chris’ responses show that he developed and is guided by a generic representation of the limit concept. By taking a retrospective view, he described that he has developed this representation, looking at other sources than the lectures, through ‘complementarization’ of a variety of representations.

Chris expresses his doubts when responding whether the sequence 1,1,1,… has a limit:

“(Laughter) I don’t know really. It definitely it will ... it will always be one ... so I am not really sure (laughter) umm ... it’s strange, because when something tends to a limit, you think of it as never reaching it ... so if it’s ... 1 ... then by definition it has a limit but ... you don’t really think of it as a limit (laughter) but just as a constant value.”

(Chris, first interview)

He evokes a dynamic view of the limit concept and an understanding (limit as unreachable) coexisting with the formal definition. His seriousness expressing his doubts suggest that, even immersed in the classroom culture at university, he will not simple let go ‘old images’ when faced with the formal definition, acknowledging that he is not making a complete sense of the concept in its overall structure, which at the time is composed by conflicting ‘pieces of knowledge’. In a certain sense, there is no primacy of the formal definition in relation to other representations and he goes through a process of restructuring them into a coherent and complex whole proudly.
announcing in his last interview where he could express the formal definition of limit of a sequence “without making it formal” as follows:

A sequence has a limit and only if, on the sequence progresses, eventually, all values of the sequence gather around a certain value.

(Chris, last interview)

Modes to reconstruct earlier dynamical views of limit into the static version above, which seems unifying the various representations and we interpret as movements across levels of complexity, are only recovered through scrutinizing Chris’ descriptions of his attempts to make sense of the formal definition. During the second interview, when Chris comments “[I could] see what the definition meant”, may be referring to “… … when you actually … think that you can … you make ε small.” (Chris, seventh interview). Notice that “you can” suggests an experiment, which seems to be guided by his generic representation of a convergent sequence. He then self corrects, mentioning an action, “you make”, in order to define a convergent sequence. Other instances from the first interview suggest that he experimented by giving N and finding a related ε, in a logical inversion of what is stated in the definition:

… you decide how far out … and you can work out an epsilon from that … or if you choose an epsilon you can work how far out.

However, moving N to the right and determining ε allows a dynamical feeling that the sequence is tending to a limit. Such thought experiments may have guided him to “… thinking about why you are doing it … … you find out why you are choosing N so they lie all there in, so … it gradually tends towards the limit” (Chris, seventh interview). Finally, a central aspect in this reanalysis is related to modes of dealing with cognitive conflicts, which appear as a pivot issue during the process of structural abstraction. Since there are learners who are not aware of a cognitive conflict, as further findings indicate, a realistic model/perspective, as described in the outline of the framework, may be a helpful ‘guide’ in order to construct the right idea of the concept. Further, the impact of cognitive conflicts and learning through conceptual change in our approach on structural abstraction reflects crucial issues in cognitive science.

CONCLUDING REMARK

Structural abstraction, from our point of view, is considered as a movement ‘from particular to unity’ in terms of ‘complementarizing’ particularized meaningful components/structure into a whole, and, on the other hand, as a movement ‘from simple to complex’ in terms of restructuring already constructed ‘pieces of knowledge’ into coherent and complex knowledge structures. In synthesis, structural abstraction acknowledges abstraction as a movement across levels of complexity rather than levels of abstractions or generality. With this approach, we call to free of the term abstraction from connotations that have been associated with it through decades in many works.
References

