Alteration to hippocampal volume and shape confined to cannabis dependence: A multisite study

Yann Chye¹, Valentina Lorenzetti¹,²,³, Chao Suo¹, Albert Batalla⁴,⁵, Janna Cousijn⁶, Anna E Goudriaan⁷,⁸, Mark Jenkinson⁹, Rocio Martin-Santos⁵, Sarah Whittle², Murat Yücel¹*, Nadia Solowij¹⁰,¹¹*

*Shared senior authors

¹Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
²Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
³Department of Psychological Sciences, Institute of Psychology, Health and Society, The University of Liverpool, Liverpool, UK
⁴Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
⁵Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of Neuroscience, University of Barcelona, Barcelona, Spain
⁶Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
⁷Department of Psychiatry, Amsterdam Institute for Addiction Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
⁸Arkin Mental Health Care, Amsterdam, The Netherlands
⁹FMRIB Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
¹⁰School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
¹¹The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights NSW 2305, Australia
**Corresponding author:** Professor Nadia Solowij, School of Psychology, University of Wollongong, Wollongong NSW 2522, Australia
Tel: +61 2 4221 3732, Email: nadia@uow.edu.au

**Running head:** Hippocampus and Cannabis

**Word count**
Abstract: 211 words
Article body: 5115 words

Number of figures: 2
Number of tables: 3
Supplementary information: 1
ABSTRACT

Cannabis use is highly prevalent and often considered to be relatively harmless. Nonetheless, a subset of regular cannabis users may develop dependence, experiencing poorer quality of life and greater mental health problems relative to non-dependent users. The neuroanatomy characterising cannabis use versus dependence is poorly understood. We aimed to delineate the contributing role of cannabis use and dependence on morphology of the hippocampus, one of the most consistently altered brain regions in cannabis users, in a large multisite dataset aggregated across four research sites. We compared hippocampal volume, and vertex-level hippocampal shape differences (i) between 121 non-using controls and 140 cannabis users; (ii) between 106 controls, 50 non-dependent users, and 70 dependent users; and (iii) between a subset of 41 controls, 41 non-dependent users, and 41 dependent users, matched on sample characteristics and cannabis use pattern (onset age and dosage). Cannabis users did not differ from controls in hippocampal volume or shape. However, cannabis-dependent users had significantly smaller right and left hippocampi relative to controls and non-dependent users, irrespective of cannabis dosage. Shape analysis indicated localised deflations in the superior-medial body of the hippocampus. Our findings support neuroscientific theories postulating dependence-specific neuroadaptations in cannabis users. Future efforts should uncover the neurobiological risk and liabilities separating dependent and nondependent use of cannabis.

Keywords: cannabis, dependence, hippocampus, MRI, neuroimaging, substance use
INTRODUCTION

Cannabis use has been widespread globally over the past two decades, with the most recent census estimating a prevalence of up to 183 million users (United Nations Office on Drugs and Crime 2016). This number may increase with recent legislative changes and more liberal policies surrounding both recreational and medicinal cannabis use, fueling debate on public health consequences, such as the potential increase in cannabis dependence and cannabis-related problems (Hasin, Sarvet, Cerdá, Keyes, Stohl, Galea & Wall 2017). Despite a general community perception of harmlessness, a subset of regular cannabis users – over 13 million – are dependent on cannabis (Degenhardt, Ferrari, Calabria, Hall, Norman, McGrath, Flaxman, Engell, Freedman, Whiteford & Vos 2013; United Nations Office on Drugs and Crime 2016). In addition, almost 50% of substance users seeking treatment are cannabis dependent (United Nations Office on Drugs and Crime 2016). Cannabis dependence represents a significant burden on the individual and society but has been poorly defined neurobiologically compared to heavy, non-dependent use. This warrants greater attention to distinctions between cannabis use and dependence, and associated harms and vulnerabilities.

Individuals with cannabis dependence report diminished control over use and compulsive use despite associated negative consequences to their functioning and mental health (American Psychiatric Association 2013; van der Pol, Liebregts, De Graaf, Ten Have, Korf, Van den Brink & Van Laar 2013a). Relative to non-dependent users, they also experience greater mental health issues (i.e. mood, anxiety, and conduct disorder) (van der Pol et al. 2013a) and impaired cognitive functioning in the domains of learning, working memory, and cognitive flexibility (Solowij & Battisti 2008; Broyd, van Hell, Beale, Yücel & Solowij 2016). Such impaired functioning may be underpinned by neuroanatomical alterations across brain regions relevant to motivation, emotion and cognition (Koob 2009; Chambers 2013), as demonstrated in regular cannabis users with higher levels of use and problem use (Koenders, Cousijn, Vingerhoets, Van Den Brink, Wiers, Meijer, Machielsen, Veltman, Goudriaan & De Haan 2016; Lorenzetti, Solowij &
Yücel 2016c). In particular, the hippocampus is often suggested to be affected by cannabis users, with a number of studies reporting hippocampal volume to be reduced in regular cannabis users relative to non-users (Yücel, Solowij, Respondek, Whittle, Fornito, Pantelis & Lubman 2008; Yücel, Lorenzetti, Suo, Zalesky, Fornito, Takagi, Lubman & Solowij 2016; Demirakca, Sartorius, Ende, Meyer, Welzel, Skopp, Mann & Hermann 2011; Ashtari, Avants, Cyckowski, Cervellione, Roofeh, Cook, Gee, Sevy & Kumra 2011; Rocchetti, Crescini, Borgwardt, Caverzasi, Politi, Atakan & Fusar-Poli 2013; Koenders et al. 2016). However, almost as many studies have not observed cannabis-use-related hippocampal alterations (Gilman et al., 2014; Mashhoon et al., 2015; Medina et al., 2007; Tzilos et al., 2005; Weiland et al., 2015). The wide-ranging sample characteristics across studies (e.g. average duration of use range from 3 to 20 years; average age of user sample range from 20 to 40 years old), the small sample size of individual studies (i.e., range of cannabis-using sample from 11 to 61), and the lack of consideration of cannabis dependence, preclude identification of key factors involved in specific hippocampal aberrations.

Emerging evidence demonstrates differences between non-dependent and dependent cannabis users in brain structure (i.e. orbitofrontal cortex (OFC) and hippocampal volume (Chye, Suo, Yücel, den Ouden, Solowij & Lorenzetti 2017b; Chye, Solowij, Suo, Batalla, Cousijn, Goudriaan, Martin-Santos, Whittle, Lorenzetti & Yücel 2017a)) and brain function (i.e. functional connectivity across amygdala, anterior cingulate, OFC, hippocampus, and nucleus accumbens (Filbey & Dunlop 2014)). Such findings may reflect neural adaptations that discriminate compulsive use in substance dependence (Koob 2009; Chambers 2013; Koob & Volkow 2017). However, most previous studies of regular cannabis users have not clarified the differences specific to dependence vs. non-dependence in regular cannabis users. It is important to distinguish between these groups to improve identification and prevention in user populations most vulnerable to cannabis-related harms.

We aimed to delineate the contributing roles of cannabis use and dependence on the hippocampus, one of the most consistently reported brain regions to be
altered in cannabis users (Lorenzetti et al. 2016c), by re-examining hippocampal morphology across an aggregated sample of 261 cannabis users (dependent and non-dependent) and non-using controls from four research sites globally (Batalla, Soriano-mas, López-solà, Torrens, Crippa, Bhattacharyya, Blanco-hinojo, Fagundo, Harrison, Nogué, Torre, Farré, Pujol & Martín-santos 2013; Solowij, Walterfang, Lubman, Whittle, Lorenzetti, Styner, Velakoulis, Pantelis & Yücel 2013; Cousijn, Vingerhoets, Koenders, De Haan, Van Den Brink, Wiers & Goudriaan 2014; Yücel et al. 2016). While the aforementioned study findings have been mixed in relation to hippocampal morphology in diverse cannabis using samples, none of these studies specifically examined cannabis dependence relative to non-dependent heavy use. We compared hippocampal morphology (i.e. both volume and shape) between (i) regular cannabis users (CB) and non-using controls (CON), and between (ii) dependent users (CB-dep), non-dependent users (CB-nondep), and controls (CON). To validate potential dependence-related hippocampal morphological differences, we further examined hippocampal volume and shape between (iii) a subset of CB-dep, CB-nondep, and CON, matched on age, gender distribution, IQ, and alcohol use, with CB-dep and CB-nondep further matched on tobacco use and cannabis use (i.e. onset and dosage). We hypothesised that hippocampal volume reduction and shape alteration would be apparent in regular cannabis users (both CB-dep and CB-nondep) relative to CON, and that these effects would be more pronounced in CB-dep relative to CB-nondep.

**METHOD**

**Participants**

Participants comprising 121 CON (aged 18 to 55; Mdn = 24 years) and 140 CB (aged 18 to 56; Mdn = 24 years), were recruited from four independently conducted studies across Amsterdam (N = 76; Cousijn et al., 2014), Barcelona (N = 55; Batalla et al., 2013), Wollongong (N = 30; Solowij et al., 2013) and Melbourne (N = 100; Yücel et al., 2016). Inclusion and exclusion criteria have been documented in a previous paper (Chye et al. 2017a), and in the Supplementary Table S1. Briefly, CB had to have used cannabis at least two days per month for at least two months, although most CB had almost daily cannabis
use for a considerable period of time (duration of regular use, \( Mdn = 6 \) years, \( range = 0.5 - 38 \) years; lifetime use, \( Mdn = 15690 \) cones, \( range = 600 - 864000 \) cones). Meanwhile, CON used less than 50 times in their lifetime and did not use in the past month. All subjects had no history of chronic medical illness or neurological conditions, or any lifetime Axis I psychiatric disorder apart from nicotine use disorder or cannabis use disorder, and had minimal illicit substance use other than cannabis (<50 times in the past 10 years).

**Measures**

Participants’ demographic and substance use characteristics were assessed separately at each individual research site. Select information (i.e. age, gender, IQ, monthly tobacco (cigarettes) use, monthly standard alcoholic drinks, and cannabis use measures) was subsequently standardised across sites (see measures in Supplementary Table S1). Cannabis use measures included monthly and lifetime cannabis consumption (measured in cones, https://cannabissupport.com.au/media/1593/timeline‐followback.pdf), age of initiation of regular cannabis use, and cannabis dependence.

Cannabis dependence information was only available from three of the four sites, and was used to separate the aggregated three-site sample into 70 CB-dep, 50 CB-nondep, and 106 CON based on recommended norms, and after excluding subjects with missing dependence information. Specifically, in Amsterdam the Mini International Neuropsychiatric Interview’s (MINI) ‘non-alcohol psychoactive substance use disorders’ module was used, with a cut-off of 3 and above as CB-dep (Lecrubier, Sheehan, Weiller, Amorim, Bonora, Sheehan, Janavs & Dunbar 1997), while Barcelona and Melbourne used the Severity of Dependence Scale (SDS), with a cut-off of 4 and above as CB-dep (Gossop, Darke, Griffiths, Hando, Powis, Hall & Strang 1995).

**Structural Image Processing**

T1-weighted structural MR images were acquired separately from each research site. Scanner details have been documented previously (Batalla *et al.* 2013; Solowij *et al.* 2013; Cousijn *et al.* 2014; Yücel *et al.* 2016; Chye *et al.* 2017a), as
well as in the Supplementary Table S1. Two sites used a Phillips Intera 3T scanner with an 8-channel head coil (Amsterdam and Wollongong), one site used a GE Signa Excite 1.5T scanner with an 8-channel head coil (Barcelona), and one site used a Siemens-Trio 3T scanner with a 32-channel head coil (Melbourne).

MR images were corrected for intensity inhomogeneity – nonparametric nonuniform intensity normalisation (N3; Sled, Zijdenbos & Evans 1998) using FreeSurfer image analysis (http://surfer.nmr.mgh.harvard.edu/) version 5.3.0. An estimate of the intracranial volume (ICV) was also obtained from FreeSurfer's automated parcellation procedure. Subsequently, the images' intensity was standardised across sites, based on the average grey matter, white matter, and cerebrospinal fluid intensity from each site, using the FMRIB Software Library (FSL; http://www.fmrib.ox.ac.uk/fsl/). Finally, the images were visually inspected to ensure consistent orientation along the anterior commissure-posterior commissure (AC-PC) plane.

**Volumetric Analysis**

The hippocampus was manually traced by a trained tracer (Y.C.) blinded to group and site membership, using the Analyze 12.0 software (AnalyzeDirect, Overland Park, KS), according to a validated protocol (Velakoulis, Pantelis, McGorry, Dudgeon, Brewer, Cook, Desmond, Bridle, Tierney, Murrie, Singh & Copolov 1999). Hippocampal boundaries were defined posteriorly as the slice with the greatest length of continuous fornix; medially as the open end of the hippocampal fissure (posterior) and the uncal fissure (anterior); laterally as the temporal horn of the lateral ventricle; inferiorly as the parahippocampal white matter; and superiorly as the fimbria and alveus (posterior) as well as the amygdala (anterior).

Intra- and inter-rater reliabilities (i.e. Intraclass Correlation Coefficient (ICC), absolute agreement, single measures) for the hippocampal tracing were assessed on 28 randomly selected images. Intra-rater reliabilities for the right and left hippocampus were .97 and .88 respectively, while inter-rater reliabilities against an expert tracer (V.L.) were .90 and .93 respectively. Intra-rater reliability was
also consistent across scanner field strength, at an ICC of .95 (collapsed across both hemispheres) for both 1.5T and 3T scanners. As tracing of all 261 images proceeded over a four-month period (from April 2016 to August 2016), longitudinal intra-rater reliability was performed on 15 images (i.e. 5 images repeated 3 times, evenly distributed across the blinded sample). Values were .93 and .83 for the right and left hippocampus respectively, indicating good consistency over time.

A series of univariate analysis of covariance (ANCOVA) models were run to examine the association between cannabis use and dependence, and left and right hippocampus volume. This included (i) comparison between CON and CB, controlling for imaging site as random factor, gender as fixed factor, ICV, age, IQ, monthly alcohol and tobacco use as covariates; (iia) comparison between CON, CB-nondep, and CB-dep (only from the three sites that obtained dependence measures – Amsterdam, Barcelona, Melbourne), controlling for all previously mentioned variables; (iib) comparison between CB-nondep and CB-dep users only, with additional inclusion of all cannabis use measures (current monthly cones, lifetime cones and age of regular use) as covariates; and (iii) comparison between CON, CB-nondep, and CB-dep, in a subset of subjects matched on gender, age, IQ, and alcohol use across all groups, and matched on tobacco and cannabis use (current monthly cones, lifetime cones and age of regular use) across CB-nondep and CB-dep.

**Shape Analysis**

The manually-traced hippocampal boundaries (i.e., object maps) were used to run shape analysis within FSL. First, the object maps were registered to MNI space, with reference from their respective T1-weighted images. Next, average boundary images for the hippocampal object maps (separately for the right and left hippocampus) were obtained. To do this, we first averaged the object maps together and binarised them at the 60% threshold. From this, we formed a one-voxel thick average boundary shape by subtracting away an eroded version of the threshold-shape. The signed distance of each individual hippocampal object to every point on the average boundary shape could then be calculated. A flow
chart of the shape analysis processing steps is presented in Supplementary Fig. S1.

The signed distances for each hippocampal label were used for further statistical analysis. A permutation-based approach with threshold-free cluster enhancement (TFCE) was adopted using FSL’s Randomise tool (Smith & Nichols 2009; Winkler, Ridgway, Webster, Smith & Nichols 2014). A total of 100,000 permutations were used for the analysis, examining shape differences between (i) CON versus CB, and (ii) CON versus CB-nondep versus CB-dep, and (iii) the matched subset of CON versus CB-nondep versus CB-dep, all controlling for imaging site, gender, age, IQ, alcohol use, and tobacco use.

**Automated Segmentation vs. Manual Tracing**

Given that it is often unfeasible for all studies, particularly studies with large databases, to quantify brain structures via manual tracing, we further compared the performance of the automated tool – FreeSurfer in hippocampal segmentation, by replicating all volume and shape analysis. Hippocampal segmentation was performed by FreeSurfer version 5.3, as described by Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen & Dale (2002). Shape analysis was also performed with a similar processing step as presented in Supplementary Fig. S1. The automated segmentation procedure was also validated against our manual tracing, which is considered the gold standard for evaluating hippocampal volume (Velakoulis *et al.* 1999), by examining the (i) correlation between both methods, and the (ii) percent volume overlap (i.e. Dice coefficient, DICE) as defined by the equation

\[
DICE = \frac{V(\text{manual } \cap \text{Freesurfer})}{(V(\text{manual}) + V(\text{freesurfer}))/2} \times 100
\]

**RESULTS**

*Sample Characteristics*
Participant characteristics and hippocampal volume measures (i) by cannabis use (i.e. CON vs. CB) and (ii) by cannabis dependence (i.e. CON vs. CB-nondep vs. CB-dep), are presented in Tables 1 and 2 respectively. The separate data from each imaging site are presented in Supplementary Tables S2 and S3.

A subset of matched CON, CB-nondep, and CB-dep were selected, to verify volumetric findings. CB-nondep and CB-dep were matched on age, gender, IQ alcohol, tobacco, and cannabis use pattern within each site. This was done by first obtaining the mean and standard deviation of each continuous variable of the smallest/reference group (i.e. $\bar{x}_{ref}$ and $\sigma_{ref}$ respectively) by site. Subsequently, each subject’s distance score ($D$) from the reference group, on all variables, was calculated using the equation

$$D = \sum \left| \frac{(x_v - \bar{x}_{ref,x})}{\sigma_{ref,x}} \right|$$

where $v$ = the variables: age, IQ, alcohol, tobacco, cannabis onset, cannabis monthly use, and cannabis lifetime use. Cannabis-using subjects were ranked and selected by their distance from the reference group. Meanwhile, control subjects were first selected for smoking status, due to the relatively low number of tobacco users in CON relative to CB. Subsequently, the previous equation was applied to select for CON with the lowest distance from the reference group, with regards to age, IQ, alcohol, and tobacco use. Nevertheless, we were unable to match CON to CB-nondep and CB-dep on tobacco use, from the Melbourne site. Characteristics and hippocampal volume measures of their matched subset is presented in Table 3, and by imaging site in Supplementary Table S4.

**Hippocampal volume comparisons by cannabis use – manual tracing**

CON and CB did not differ significantly in right or left hippocampal volume (Table 1)\(^\dagger\). Females had smaller hippocampi compared to males ($F_{1,250} = 12.02$ and 20.00 for the right and left hippocampus respectively, $p \leq .001, \eta_p^2 \geq .046$). A

---

\(^\dagger\)Four CON from the Amsterdam site used between 15 to 50 cannabis joints in their lifetime. When analysis was re-run excluding these subjects, the insignificant group effect remained ($F_{1,246} = 2.32$ and 1.58, $p = .13$ and .21) for the right and left hippocampus respectively.
site effect was also found ($F_{3,250} = 12.34$ and $10.65$ for the right and left hippocampus respectively, $p < .001, \eta^2_p \geq .129$), with participants from Barcelona demonstrating smaller hippocampi than participants from every other site ($p \leq .006$) while participants from Amsterdam had larger hippocampi than participants from Melbourne ($p \leq .018$). IQ significantly affected left hippocampus volume ($F_{1,250} = 4.33, p = .039, \eta^2_p = .017$). None of the other covariates (i.e. age, IQ, alcohol use and tobacco use) were statistically significant in the model ($p \geq .054, \eta^2_p \leq .015$).

**Hippocampal volume comparisons by cannabis dependence – manual tracing**

Analyses comparing CON, CB-nondep, and CB-dep (from three sites) revealed a significant effect of dependence group in the right ($F_{2,215} = 5.91, p = .003, \eta^2_p = .052$, medium effect size) and left ($F_{2,215} = 4.49, p = .012, \eta^2_p = .040$, medium effect size) hemisphere (Table 2)\(^\dagger\). CB-dep had significantly smaller right and left hippocampi compared to both CON ($p = .003$ and .008) and CB-nondep ($p = .006$ and .016) (Fig. 1). As in the four-site analysis, gender ($F_{1,215} = 16.39$ and $27.57$ for right and left hippocampus respectively, $p < .001$) and site effects ($F_{2,215} = 19.18$ and $15.89$ for right and left hippocampus respectively, $p < .001$) were significant. Females had smaller hippocampi than males, and again participants from the Barcelona site had smaller hippocampi than those from the other two sites ($p \leq .001$), while participants from the Amsterdam site had larger hippocampi than those from Melbourne ($p \leq .026$). None of the covariates were statistically significant in the model ($p \geq .087, \eta^2_p \leq .014$).

To establish the specificity of volumetric differences to cannabis dependence rather than cannabis use or exposure (and particularly since CB-dep had significantly greater monthly use than CB-nondep), CB-dep and CB-nondep were further compared, additionally controlling for cannabis use measures (current monthly cones, lifetime cones and age of regular use). The significant group difference persisted, with CB-dep showing smaller right ($F_{1,104} = 6.02, p = .016$,

\(^\dagger\) Four CON from the Amsterdam site used between 15 to 50 cannabis joints in their lifetime. When analysis was re-run excluding these subjects, the significant dependence effect remained ($F_{2,211} = 5.72$ and $4.41, p = .004$ and .013) for the right and left hippocampus respectively.
Hippocampal volume comparisons by cannabis dependence in matched subset – manual tracing

Finally, the subset of matched CON, CB-nondep, and CB-dep were compared on hippocampal volume. Gender distribution, age, IQ, alcohol use, and tobacco use were matched across groups within each site, apart from Melbourne, for which we were unable to match tobacco use. Furthermore, CB-nondep and CB-dep were matched on all previously mentioned variables (i.e. gender, age, IQ, alcohol, and tobacco use), and cannabis use pattern. The effect of cannabis dependence persisted for the right \((F_{1,112} = 3.97, p = .022, \eta_p^2 = .066)\) and left hippocampi \((F_{1,112} = 3.15, p = .047, \eta_p^2 = .053)\). CB-dep users demonstrated significantly smaller hippocampi than CB-nondep users in both hemispheres \((p = .016\) and \(p = .022\) respectively), and a smaller right hippocampus than CON \((p = .020)\).

Hippocampal shape comparisons by cannabis use and dependence – manual tracing

Cluster-based shape analysis was performed controlling for ICV, imaging site, gender, IQ, age, alcohol use and tobacco use. Comparison between (i) CON and CB revealed no significant shape difference between groups. However, comparison between (ii) CON, CB-nondep, and CB-dep demonstrated a significant shape difference between CB-nondep and CB-dep in the right and left hippocampus (Fig. 2A-D), but not between CON and CB-nondep, or CON and CB-dep§. Specifically, deflation occurred along the superior-medial body of the hippocampi of CB-dep relative to CB-nondep. Nevertheless, when comparison was performed between the subset of (iii) matched CON, CB-nondep, and CB-dep, deflation in CB-dep relative to CB-nondep did not survive FWE-correction across the image space.

§ Four CON from the Amsterdam site used between 15 to 50 cannabis joints in their lifetime. When analysis was re-run excluding these subjects, results remained similar.
**Hippocampal volume and shape - FreeSurfer vs. manual tracing**

All hippocampal volume and shape analyses were replicated using the automated segmentation software FreeSurfer. FreeSurfer performance was also validated, relative to manual tracing, by examining the correlation between both methods, and the percent volume overlap. Results for FreeSurfer-segmented hippocampal comparison between (i) CON and CB, (iia) CON, CB-nondep and CB-dep, (iib) CB-nondep and CB-dep only, and (iii) matched subset of CON, CB-nondep, and CB-dep are presented in Supplementary Table 5. Briefly, there was no significant hippocampal volume difference between CON and CB, but CB-dep users similarly showed a larger left hippocampus than CB-nondep users ($p = .013$). When only CB-nondep and CB-dep users were compared, additionally controlling for cannabis use pattern, CB-dep users again demonstrated significantly larger right and left hippocampi relative to CB-nondep users ($p = .027$ and $p = .005$ respectively). When the matched subset of CON, CB-nondep, and CB-dep were compared however, no significant dependence effect was found. Cluster-based shape analysis of FreeSurfer-segmented hippocampi meanwhile only demonstrated a shape difference between CB-dep and CB-nondep users that did not survive FWE-correction. While the FreeSurfer segmented hippocampi were strongly correlated with the manual tracing (R=0.72 and 0.66 for the right and left hippocampus respectively, $p < .001$), the FreeSurfer hippocampi are systematically larger than the manual output, as illustrated in the Bland-Altman plot (Supplementary Fig. S3). Estimation of volume overlap between both methods suggests an average volume overlap of 71.2% (SD = 4.39%) and 70.10% (SD = 4.75%) for the right and left hippocampus respectively. The larger hippocampal volume produced by FreeSurfer may be due to its greater tendency to include surrounding structures and cerebrospinal fluid (CSF), as illustrated in example slices in Supplementary Fig. S3.

**DISCUSSION**

In this large-scale multi-site study, we demonstrated significant hippocampal volume reduction only in cannabis dependent users relative to both non-user controls and non-dependent users, irrespective of extent of cannabis use. Shape
difference was also observed in the right and left hippocampus, only in dependent users (deflation of the superior-medial body) relative to non-dependent users. These results suggest that hippocampal volume and shape alterations may be specific to cannabis dependence rather than non-dependent regular cannabis use. Our findings are consistent with previous work reflecting dependence-specific effects, for example in neuroanatomical and functional alteration across the cortical and limbic regions (Filbey & Dunlop 2014; Chye et al. 2017b a). Future investigative efforts should thus be mindful in assessing and discriminating between cannabis use and dependence when evaluating the harms and vulnerabilities associated with chronic cannabis use.

Hippocampal volumetric reduction is the most consistently reported neuroanatomical finding in regular cannabis users relative to non-users (Rocchetti et al. 2013; Koenders et al. 2016; Yücel et al. 2016; Lorenzetti et al. 2016c; Chye et al. 2017b), but was not observed in all studies (e.g., Gilman et al., 2014; Mashhoon et al., 2015; Medina et al., 2007; Tzilos et al., 2005; Weiland et al., 2015). We were well-powered to detect group differences in a large sample (aggregated across well-controlled studies from four international research sites), and found no volume reduction in cannabis use per se, but specifically in dependent users. Notably, these findings were not driven by cannabis use level (i.e, monthly or lifetime use), suggesting cannabis dependence-specific effects on hippocampal morphology to be dissociated from those due to level of cannabis use. This contrasts previous reports of a dose-dependent association between hippocampal volume and cannabis dosage (Yücel et al. 2008; Ashtari et al. 2011; Cousijn, Wiers, Ridderinkhof, Brink, Veltman & Goudriaan 2012). However, none of the aforementioned studies discriminated between dependent and non-dependent users in their samples, and might not have been able to dissociate hippocampal differences linked to dosage versus dependence. Indeed, less than 40% of frequent cannabis users (i.e. using ≥3 days per week for ≥1 year) will develop a dependence syndrome, irrespective of level of use (van der Pol, Liebregts, de Graaf, Korf, Van den Brink & Van Laar 2013c). This distinction in the cannabis user population (i.e. dependence vs. non-dependence) may explain why a number of studies have failed to detect hippocampal volume differences in
cannabis users compared to controls, as these studies may have included varying proportions of dependent and non-dependent users (Tzilos et al. 2005; Medina et al. 2007; Gilman et al. 2014; Weiland et al. 2015; Mashhoon et al. 2015).

We also found a localised shape difference between dependent and non-dependent users along the superior-medial body of the hippocampus, roughly coinciding with the cornu ammonis and dentate gyrus (CA3 and CA4/DG) regions (Finegersh, Avedissian, Shamim, Dustin, Thompson & Theodore 2011). While this result did not survive FWE correction in the subset of users matched on age, IQ, and substance use, it is possible that the smaller sample (i.e., from 226 in the original analysis, to 123 in this analysis) resulted in reduced power to detect subtle shape effects. Hippocampal shape alterations in cannabis users have only been examined in four prior studies, demonstrating regional shape differences in current users, recreational users (Mdn = 6-10 lifetime use), and users with a past cannabis use disorder (Solowij et al. 2013; Smith, Cobia, Reilly, Gilman, Roberts, Alpert, Wang, Breiter & Csernansky 2015; Orr, Paschall & Banich 2016; Koenders, Lorenzetti, Haan, Suo, Vingerhoets, Van den Brink, Wiers, Meijer, Machielsen, Goudriaan, Veltman, Yücel & Cousijn 2017). Our finding is consistent with previous reported alterations in regular cannabis users (i.e. shape deflation along the hippocampal head and body (Solowij et al. 2013; Koenders et al. 2017)) and in dependent users (i.e., reduced CA3 and CA4/DG volume (Chye et al. 2017b)). Deflation confined to the CA3 and CA4/DG hippocampal subregions is noteworthy as these are the major sites for adult neurogenesis and subsequent innervation of new neurons, a process crucial for learning and memory, as well as affective and stress regulation (Canales 2007; Chambers 2013). Indeed, poorer cognitive and emotive functioning are documented in dependent cannabis users (Solowij & Battisti 2008; van der Pol et al. 2013a; Broyd et al. 2016). We were unfortunately unable to explore whether cannabis dependence-related hippocampal morphology mediates differences in cognitive and emotive functioning (e.g., depressive or anxiety symptoms) in the current study. Such knowledge may be useful for understanding the interaction between cannabis dependence and functioning in relation to brain structure, and presents a potential avenue for future work.
Prominent theories of addiction propose that vulnerabilities in the decision-making process coupled with distress associated with negative mood states are the key drivers in persistent substance taking observed in substance dependence (Koob 2008; Koob & Le Moal 2008; Redish, Jensen & Johnson 2008; Volkow & Morales 2015). Our finding of hippocampal alteration specific to cannabis dependence supports theories suggesting dependence-specific neuroalterations. The amygdala-hippocampal system is involved in affective processing (Ekhtiari, Victor & Paulus 2017), with impaired hippocampal functioning (e.g. low hippocampal neurogenesis) further linked to poor stress regulation (Hyman & Sinha 2009; Schloesser, Manji & Martinowich 2009). Increased stress reactivity and negative mood state pose a vulnerability factor which is strongly associated with dependence in cannabis users, beyond and distinct from extent of cannabis use (Stewart 2003; Koob 2009; van der Pol et al. 2013c). Additionally, hippocampal function is also necessary to guide learning and adaptive behavior, with impaired function suggested to restrict the complexity and flexibility of motivational learning that subserves the extinction of substance use behavior, thus contributing to the maintenance of dependence (Canales 2007; Chambers, Bickel & Potenza 2007; Redish et al. 2008; Chambers 2013). While future efforts are necessary to expand on the link between hippocampal neuroanatomy and the cognitive, stress, and affective regulation process guiding cannabis dependence, it nonetheless appears that dependent cannabis users may be distinctly impacted in neuroanatomy (Filbey & Yezhuvath 2013; Chye et al. 2017b a).

Finally, we compared the consistency between two separate methods of measuring hippocampal volumes i.e. FreeSurfer and manual segmentation (see Supplementary Material 2), and showed that these were highly correlated (about 70% volume overlap). FreeSurfer produced systematically larger hippocampi than did manual segmentation, which may be due to its greater tendency to include surrounding structures and cerebrospinal fluid (see example slices in Supplementary Fig. S3). However, we still found a significant effect of cannabis dependence in FreeSurfer-segmented hippocampi (i.e. in analyses controlling for
cannabis use pattern, but not in the matched subset analyses, Supplementary Table S5), suggesting mostly consistent results from both methods. The manual segmentation method is considered the gold standard for evaluating hippocampal volume (Velakoulis et al. 1999), and assumed to be superior to automated methods (i.e. SPM, FSL, FreeSurfer), as it allows for a more fine-grained inspection of hippocampal volume and shape. Meanwhile FreeSurfer’s estimations of hippocampal volume tend to show a larger variance, in addition to a tendency to underestimate grey matter volume with increasing scanner noise, causing it’s output to be more subject to hardware-related differences (Butts 2013; Wenger, Mårtensson, Noack, Bodammer, Kühn, Schaefer, Heinze, Düzel, Bäckman, Lindenberger & Lövdén 2014; Fellhauer, Zöllner, Schröder, Degen, Kong, Essig, Thomann & Schad 2015). As such, when assessing impacts on the morphology of the hippocampus, it may be preferable for studies to adopt manual tracing methods wherever feasible.

Some limitations of this study must be addressed. Collating a mega-analysis from multiple imaging sites meant that site-related factors such as scanner differences and geographical differences could have confounded the results. To address this, we controlled for imaging site in all our group analyses. Furthermore, the hippocampal volume of cannabis dependent users was clearly reduced relative to non-dependent users and controls at every site, suggesting that no single site was driving the observed results (Supplementary Figure S2). Secondly, the cross-sectional nature of our analysis precludes interpretation on the causality of the effects, i.e. whether altered hippocampal morphology pre-exists or is consequent to cannabis use and dependence. Finally, as different imaging sites have adopted different instruments in measuring cannabis dependence, we could not directly compare levels of dependence severity with hippocampal morphology across sites or examine severity in regression models. Instead, we adopted validated cut-offs (Lecrubier et al. 1997; Swift, Copeland & Hall 1998; van der Pol, Liebregts, de Graaf, Korf, van den Brink & van Laar 2013b) to consistently investigate hippocampal morphology between dependent and non-dependent users. Studies using consistent diagnostic instruments of substance use disorders (e.g. DSM-5; American Psychiatric Association 2013) are needed to
verify the association between hippocampal morphology and dependence severity, particularly in further delineating the relationship between dependence, cognitive and affective regulation, and the neuroanatomy of substance users (Lorenzetti, Cousijn, Solowij, Garavan, Suo & Verdejo-García 2016a; Lorenzetti, Solowij, Suo, Walterfang, Lubman, Verdejo-García, Cousijn, Pantelis, Fornito & Yucel 2016b; Lorenzetti et al. 2016c; Solowij, Lorenzetti & Yücel 2016).

**Conclusion**

We extend on previous studies of hippocampal morphological alteration (i.e. shape and volume) in non-dependent and dependent cannabis users in a large multisite-imaging cohort, using both manual tracing and automated methods. Hippocampal volume reduction was specific to dependent users, even after controlling for cannabis dosage and sample characteristic (i.e. age, IQ, alcohol and tobacco use). There was also an emerging shape difference along the superior-medial boundary of the hippocampus, between dependent and non-dependent users. Our findings suggest that not all cannabis users are alike, with a sub-group of vulnerable users – dependent users – showing hippocampal morphological alterations compared to non-dependent users and controls.

Further steps should be made to characterise and verify the neural and behavioral differences that separate non-dependent and dependent cannabis users in large normative samples and treatment seeking populations, whether as vulnerability factors or consequent of use, to better identify and pre-empt the transition of cannabis users to dependence.
Acknowledgements

Original data collection was supported by the Netherlands Organisation for Scientific Research–Health Research and Development, ZON-Mw (AG, grant #311800002); an Amsterdam Brain Imaging Platform grant (JC); Plan Nacional sobre Drogas. Ministerio de Sanidad y Política Social (RMS, grant PNSD:2011/050 and SGR:2014/1114); the Clive and Vera Ramaciotti Foundation for Biomedical Research (NS); the Schizophrenia Research Institute with NSW Health (NS); and the National Health and Medical Research Council (NHMRC) of Australia (NS, Project Grant #459111).

Financial Disclosures

M.Y. was supported by a National Health and Medical Research Council of Australia Fellowship [APP#1117188] and the David Winston Turner Endowment Fund. N.S. was supported by an Australian Research Council Future Fellowship (FT110100752). All authors report no financial interest or potential conflict of interest.

Authors contribution

YC, VL, CS, MY, and NS were responsible for the study concept and design. VL, AB, JC, AEG, RMS, SW, MY and NS contributed to the acquisition of data. YC performed the data analysis, and VL, CS, and MJ assisted in analysis methodology. YC drafted the manuscript. VL, CS, MY, and NS provided critical intellectual input and revision to the manuscript. All authors critically reviewed and approved the final version of the manuscript.
REFERENCES


Addiction Biology  DOI: 10.1111/adb.12652


Yann Chye

23
Table 1 Sample characteristics and MR volumetric measures of controls (CON) and cannabis users (CB) averaged across 4 sites (mean (SD)).

<table>
<thead>
<tr>
<th></th>
<th>CON</th>
<th>CB</th>
<th>t259/X2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 121</td>
<td>N = 140</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>26.12 (9.03)</td>
<td>28.03 (10.25)</td>
<td>1.58</td>
</tr>
<tr>
<td>Gender (% M / F)</td>
<td>70.25 / 29.75</td>
<td>67.14 / 32.86</td>
<td>0.29</td>
</tr>
<tr>
<td>IQ $^a$</td>
<td>109.31 (10.54)</td>
<td>103.45 (10.74)</td>
<td>4.44***</td>
</tr>
<tr>
<td>Alcohol (StDr/mth) $^b$</td>
<td>19.87 (23.77)</td>
<td>24.43 (25.18)</td>
<td>1.50</td>
</tr>
<tr>
<td>Tobacco (Cig/mth) $^b$</td>
<td>30.88 (97.92)</td>
<td>254.96 (233.77)</td>
<td>9.82***</td>
</tr>
</tbody>
</table>

**Cannabis Use**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Regular Use</td>
<td>-</td>
<td>17.84 (3.38)</td>
<td>-</td>
</tr>
<tr>
<td>Current Use</td>
<td>-</td>
<td>334.08 (322.32)</td>
<td>-</td>
</tr>
<tr>
<td>(cones/month)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime Use (cones)</td>
<td>-</td>
<td>57,107 (99,987)</td>
<td>-</td>
</tr>
</tbody>
</table>

**Volumetric measures (mm$^3$)**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial Volume</td>
<td>1.55 (0.20)</td>
<td>1.52 (0.17)</td>
<td>1.31</td>
</tr>
<tr>
<td>(10$^6$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right hippocampus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>2,584.45 (362.77)</td>
<td>2,411.68 (316.24)</td>
<td>2.50$^d$</td>
</tr>
<tr>
<td>FreeSurfer $^c$</td>
<td>4,509.66 (469.21)</td>
<td>4,381.56 (414.04)</td>
<td>0.00$^d$</td>
</tr>
<tr>
<td>Left hippocampus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>2,455.05 (342.42)</td>
<td>2,314.68 (307.18)</td>
<td>1.56$^d$</td>
</tr>
<tr>
<td>FreeSurfer $^c$</td>
<td>4,467.87 (434.48)</td>
<td>4,334.63 (434.42)</td>
<td>0.04$^d$</td>
</tr>
</tbody>
</table>

$^a$ Estimated IQ measured with the Dutch version of the National Adult Reading Test (DART; Schmand, Bakker, Saan & Louman 1991) (Amsterdam), the vocabulary subscale of the Wechsler Adult Intelligence Scale – Third Edition (WAIS-III; Wechsler 1997) (Barcelona); the National Adult Reading Test (NART; Nelson 1982) (Wollongong); and the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler 1999) (Melbourne).

$^b$ StDr/mth = standard drinks per month; Cig/mth = cigarettes smoked per month

$^c$ Two CON subjects were excluded due to poor FreeSurfer hippocampal segmentation (i.e. outlier with hippocampal volume of 2204.48 and 2037.21 respectively), resulting in n of CON = 119.

$^d$ F statistic for group comparison of hippocampal volume, controlling for imaging site as random factor, gender as fixed factor, ICV, age, IQ, monthly alcohol and tobacco use as covariates. See Supplementary Table S5 for full results.

*p < .05, **p < .01, ***p < .001
**Table 2** Sample characteristics and MR volumetric measures of controls (CON), non-dependent (CB-nondep) and dependent (CB-dep) cannabis users averaged across 3 sites (mean [SD])

<table>
<thead>
<tr>
<th></th>
<th>CON N = 106</th>
<th>CB-nondep N = 50</th>
<th>CB-dep N = 70</th>
<th>T223/X2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age (years)</strong></td>
<td>24.77 (7.91)</td>
<td>27.07 (10.33)</td>
<td>26.74 (9.18)</td>
<td>1.61</td>
</tr>
<tr>
<td><strong>Gender (% M / F)</strong></td>
<td>66.98 / 33.02</td>
<td>60.00 / 40.00</td>
<td>64.29 / 35.71</td>
<td>0.73</td>
</tr>
<tr>
<td><strong>IQ a</strong></td>
<td>108.65 (10.71)</td>
<td>103.03 (11.13)</td>
<td>102.13 (10.86)</td>
<td>9.15***d</td>
</tr>
<tr>
<td><strong>Alcohol (StDr/mth) b</strong></td>
<td>18.70 (23.90)</td>
<td>21.54 (25.03)</td>
<td>21.88 (22.78)</td>
<td>0.46</td>
</tr>
<tr>
<td><strong>Tobacco (Cig/mth) b</strong></td>
<td>30.94 (96.72)</td>
<td>236.90</td>
<td>219.72</td>
<td>35.89***e</td>
</tr>
<tr>
<td></td>
<td>(249.97)</td>
<td>(197.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Cannabis Use</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of Regular Use</td>
<td>-</td>
<td>17.79 (2.66)</td>
<td>17.44 (3.23)</td>
<td>0.61</td>
</tr>
<tr>
<td>Current Use</td>
<td>-</td>
<td>229.81</td>
<td>351.64</td>
<td>-2.54*</td>
</tr>
<tr>
<td>(cones/month)</td>
<td>(202.25)</td>
<td>(290.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime Use (cones)</td>
<td>-</td>
<td>32,375</td>
<td>50,431</td>
<td>-1.54</td>
</tr>
<tr>
<td></td>
<td>(47,641)</td>
<td>(72,812)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Volumetric measures (mm³)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial Volume (10⁶)</td>
<td>1.53 (0.19)</td>
<td>1.46 (0.19)</td>
<td>1.53 (0.15)</td>
<td>2.72</td>
</tr>
<tr>
<td>Right hippocampus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>2,542.21</td>
<td>2,474.32</td>
<td>2,340.50</td>
<td>5.91**f</td>
</tr>
<tr>
<td></td>
<td>(323.36)</td>
<td>(326.97)</td>
<td>(287.51)</td>
<td></td>
</tr>
<tr>
<td>FreeSurfer c</td>
<td>4476.59</td>
<td>4425.79</td>
<td>4374.22</td>
<td>2.04f</td>
</tr>
<tr>
<td></td>
<td>(449.19)</td>
<td>(379.48)</td>
<td>(422.98)</td>
<td></td>
</tr>
<tr>
<td>Left hippocampus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>2,420.41</td>
<td>2,368.56</td>
<td>2,250.19</td>
<td>4.49f</td>
</tr>
<tr>
<td></td>
<td>(312.78)</td>
<td>(329.54)</td>
<td>(278.38)</td>
<td></td>
</tr>
<tr>
<td>FreeSurfer c</td>
<td>4453.60</td>
<td>4386.12</td>
<td>4299.16</td>
<td>3.22**f</td>
</tr>
<tr>
<td></td>
<td>(418.80)</td>
<td>(446.93)</td>
<td>(422.87)</td>
<td></td>
</tr>
</tbody>
</table>

*Estimated IQ measured with the Dutch version of the National Adult Reading Test (DART; Schmand, Bakker, Saan & Louman 1991) (Amsterdam), the vocabulary subscale of the Wechsler Adult Intelligence Scale – Third Edition (WAIS-III; Wechsler 1997) (Barcelona); and the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler 1999) (Melbourne).
b StDr/mth = standard drinks per month; Cig/mth = cigarettes smoked per month

Two CON subjects were excluded due to poor FreeSurfer hippocampal segmentation (i.e. outlier with hippocampal volume of 2204.48 and 2037.21 respectively), resulting in n of CON = 104.

c CON > CB-nondep, p = .003; CON > CB-dep, p < .001

d CON < CB-nondep, p < .001; CON < CB-dep, p < .001

F statistic for group comparison of hippocampal volume, controlling for imaging site as random factor, gender as fixed factor, ICV, age, IQ, monthly alcohol and tobacco use as covariates. See Supplementary Table S5 for full results.

*p < .05, **p < .01, ***p < .001
**Table 3** Sample characteristics and MR volumetric measures of controls (CON), non-dependent (CB-nondep) and dependent (CB-dep) cannabis users in matched subset, averaged across 3 sites (mean (SD))

<table>
<thead>
<tr>
<th></th>
<th>CON</th>
<th>CB-nondep</th>
<th>CB-dep</th>
<th>( F_{2,120} / X^2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CON</strong></td>
<td>( N = 41 )</td>
<td>( N = 41 )</td>
<td>( N = 41 )</td>
<td></td>
</tr>
<tr>
<td><strong>Age (years)</strong></td>
<td>26.09 (8.68)</td>
<td>28.58 (10.81)</td>
<td>26.71 (8.54)</td>
<td>0.79</td>
</tr>
<tr>
<td><strong>Gender (% M / F)</strong></td>
<td>63.4 / 36.6</td>
<td>63.4 / 36.6</td>
<td>63.4 / 36.6</td>
<td>0.00</td>
</tr>
<tr>
<td><strong>IQ (^a)</strong></td>
<td>107.35 (8.87)</td>
<td>103.33 (12.11)</td>
<td>103.92 (8.78)</td>
<td>1.92</td>
</tr>
<tr>
<td><strong>Alcohol (StDr/mth) (^b)</strong></td>
<td>24.39 (27.15)</td>
<td>20.65 (22.84)</td>
<td>20.52 (17.22)</td>
<td>0.38</td>
</tr>
<tr>
<td><strong>Tobacco (Cig/mth) (^b)</strong></td>
<td>76.28 (143.36)</td>
<td>238.83 (253.82)</td>
<td>213.64 (187.22)</td>
<td>7.84** (^c)</td>
</tr>
<tr>
<td><strong>Cannabis Use</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Age of Regular Use</strong></td>
<td>-</td>
<td>17.82 (2.81)</td>
<td>17.48 (2.58)</td>
<td>0.57</td>
</tr>
<tr>
<td><strong>Current Use</strong></td>
<td>-</td>
<td>235.40 (209.86)</td>
<td>278.94 (172.76)</td>
<td>1.03</td>
</tr>
<tr>
<td><strong>(cones/month)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Lifetime Use (cones)</strong></td>
<td>-</td>
<td>38,340 (50,702)</td>
<td>37,288 (45,640)</td>
<td>0.10</td>
</tr>
<tr>
<td><strong>Volumetric measures (mm(^3))</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Intracranial Volume (10(^6))</strong></td>
<td>1.54 (0.17)</td>
<td>1.49 (0.18)</td>
<td>1.50 (0.17)</td>
<td>0.40</td>
</tr>
<tr>
<td><strong>Right hippocampus</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Manual</strong></td>
<td>2,525.00 (311.25)</td>
<td>2,466.44 (290.37)</td>
<td>2,355.56 (310.13)</td>
<td>3.97* (^d)</td>
</tr>
<tr>
<td><strong>FreeSurfer</strong></td>
<td>4,487.90 (451.50)</td>
<td>4,454.43 (341.31)</td>
<td>4,366.09 (436.79)</td>
<td>1.22 (^d)</td>
</tr>
<tr>
<td><strong>Left hippocampus</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Manual</strong></td>
<td>2,373.05 (316.76)</td>
<td>2,366.93 (313.91)</td>
<td>2,246.15 (287.54)</td>
<td>3.15* (^d)</td>
</tr>
<tr>
<td><strong>FreeSurfer</strong></td>
<td>4,500.68 (458.74)</td>
<td>4,413.65 (421.80)</td>
<td>4,309.69 (462.13)</td>
<td>1.82 (^d)</td>
</tr>
</tbody>
</table>

\(^a\) Estimated IQ measured with the Dutch version of the National Adult Reading Test (DART; Schmand, Bakker, Saan & Louman 1991) (Amsterdam), the vocabulary subscale of the Wechsler Adult Intelligence Scale – Third Edition (WAIS-III; Wechsler 1997) (Barcelona); and the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler 1999) (Melbourne).

\(^b\) StDr/mth = standard drinks per month; Cig/mth = cigarettes smoked per month

\(^c\) CON < CB-nondep, \( p < .001 \); CON < CB-dep, \( p = .002 \)
$F$ statistic for group comparison of hippocampal volume, controlling for imaging site as random factor, gender as fixed factor, ICV, age, IQ, monthly alcohol and tobacco use as covariates. See Supplementary Table S5 for full results.

*p < .05, **p < .01, ***p < .001

**Figure Legend**

![Figure 1](image)

**Fig. 1** Right and left hippocampal volume in controls (CON), non-dependent (CB-nondep) and dependent (CB-dep) cannabis users, corrected for intracranial volume (ICV) and gender; bars represent 95% confidence interval; *p < .05 **p < .01.
Fig. 2 (A,B) Cross-sectional coronal, axial and sagittal slices of MR scans and (C,D) 3D rendering of the right and left hippocampus, depicting areas of deflation in hippocampal shape in CB-dep compared to CB-nondep users.