PhosphOrtholog: A web-based tool for cross-species mapping of orthologous protein post-translational modifications

Journal article


Chaudhuri, Rima, Sadrieh, Arash, Hoffman, Nolan J., Parker, Benjamin L., Humphrey, Sean J., Stockli, Jacqueline, Hill, Adam P., James, David E. and Yang, Jean Yee Hwa. (2015). PhosphOrtholog: A web-based tool for cross-species mapping of orthologous protein post-translational modifications. BMC Genomics. 16(617), pp. 1 - 14. https://doi.org/10.1186/s12864-015-1820-x
AuthorsChaudhuri, Rima, Sadrieh, Arash, Hoffman, Nolan J., Parker, Benjamin L., Humphrey, Sean J., Stockli, Jacqueline, Hill, Adam P., James, David E. and Yang, Jean Yee Hwa
Abstract

Background: Most biological processes are influenced by protein post-translational modifications ( PTMs ). Identifying novel PTM sites in different organisms, including humans and model organisms, has expedited our understanding of key signal transduction mechanisms. However, with increasing availability of deep, quantitative datasets in diverse species, there is a growing need for tools to facilitate cross-species comparison of PTM data. This is particularly important because functionally important modification sites are more likely to be evolutionarily conserved; yet cross-species comparison of PTMs is difficult since they often lie in structurally disordered protein domains. Current tools that address this can only map known PTMs between species based on known orthologous phosphosites, and do not enable the cross-species mapping of newly identified modification sites. Here, we addressed this by developing a web-based software tool, PhosphOrtholog ( www.phosphortholog.com ) that accurately maps protein modification sites between different species. This facilitates the comparison of datasets derived from multiple species, and should be a valuable tool for the proteomics community. Results: Here we describe PhosphOrtholog, a web-based application for mapping known and novel orthologous PTM sites from experimental data obtained from different species. PhosphOrtholog is the only generic and automated tool that enables cross-species comparison of large-scale PTM datasets without relying on existing PTM databases. This is achieved through pairwise sequence alignment of orthologous protein residues. To demonstrate its utility we apply it to two sets of human and rat muscle phosphoproteomes generated following insulin and exercise stimulation, respectively, and one publicly available mouse phosphoproteome following cellular stress revealing high mapping and coverage efficiency. Although coverage statistics are dataset dependent, PhosphOrtholog increased the number of cross-species mapped sites in all our example data sets by more than double when compared to those recovered using existing resources such as PhosphoSitePlus. Conclusions: PhosphOrtholog is the first tool that enables mapping of thousands of novel and known protein phosphorylation sites across species, accessible through an easy-to-use web interface. Identification of conserved PTMs across species from large-scale experimental data increases our knowledgebase of functional PTM sites. Moreover, PhosphOrtholog is generic being applicable to other PTM datasets such as acetylation, ubiquitination and methylation.

Keywordscross-species; mapping post-translational modification (PTM) sites; novel phosphorylation site mapping; web application; human PTMs; rat PTMs; mouse PTMs; fly PTMs
Year2015
JournalBMC Genomics
Journal citation16 (617), pp. 1 - 14
PublisherBiomed Central Ltd
ISSN1471-2164
Digital Object Identifier (DOI)https://doi.org/10.1186/s12864-015-1820-x
Scopus EID2-s2.0-84939513727
Open accessOpen access
Page range1 - 14
Research GroupMary MacKillop Institute for Health Research
Publisher's version
Additional information

© 2015 Chaudhuri et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Place of publicationUnited Kingdom
Permalink -

https://acuresearchbank.acu.edu.au/item/8521v/phosphortholog-a-web-based-tool-for-cross-species-mapping-of-orthologous-protein-post-translational-modifications

  • 106
    total views
  • 74
    total downloads
  • 3
    views this month
  • 2
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Discordant skeletal muscle gene and protein responses to exercise
Bishop, David J., Hoffman, Nolan J., Taylor, Dale F., Saner, Nicholas J., Lee, Matthew J.-C. and Hawley, John A.. (2023). Discordant skeletal muscle gene and protein responses to exercise. Trends in Biochemical Sciences. 48(11), pp. 927-936. https://doi.org/10.1016/j.tibs.2023.08.005
Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator
Ovens, Ashley J., Gee, Yi Sing, Ling, Naomi X. Y., Yu, Dingyi, Hardee, Justin P., Chung, Jin D., Ngoei, Kevin R. W., Waters, Nicholas J., Hoffman, Nolan J., Scott, John W., Loh, Kim, Spengler, Katrin, Heller, Regine, Parker, Michael W., Lynch, Gordon S., Huang, Fei, Galic, Sandra, Kemp, Bruce E., Baell, Jonathan B., ... Langendorf, Christopher G.. (2022). Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator. Biochemical Journal. 479(11), pp. 1181-1204. https://doi.org/10.1042/BCJ20220067
Disrupting AMPK-glycogen binding in mice increases carbohydrate utilization and reduces exercise capacity
Janzen, Natalie R., Whitfield, Jamie, Murray-Segal, Lisa, Kemp, Bruce E., Hawley, John A. and Hoffman, Nolan J.. (2022). Disrupting AMPK-glycogen binding in mice increases carbohydrate utilization and reduces exercise capacity. Frontiers in Physiology. 13, p. 859246. https://doi.org/10.3389/fphys.2022.859246
Metabolomics reveals mouse plasma metabolite responses to acute exercise and effects of disrupting AMPK-glycogen interactions
Belhaj, Mehdi, Lawler, Nathan, Hawley, John Alan, Broadhurst, David, Hoffman, Nolan John and Reinke, Stacey. (2022). Metabolomics reveals mouse plasma metabolite responses to acute exercise and effects of disrupting AMPK-glycogen interactions. Frontiers in Molecular Biosciences. pp. 1-16. https://doi.org/10.3389/fmolb.2022.957549
Metabolomics and lipidomics : Expanding the molecular landscape of exercise biology
Belhaj, Mehdi R., Lawler, Nathan G. and Hoffman, Nolan J.. (2021). Metabolomics and lipidomics : Expanding the molecular landscape of exercise biology. Metabolites. 11(151), p. Article 151. https://doi.org/10.3390/metabo11030151
Mice with whole-body disruption of AMPK-glycogen binding have increased adiposity, reduced fat oxidation and altered tissue glycogen dynamics
Janzen, Natalie, Whitfield, Jamie, Murray-Segal, Lisa, Kemp, Bruce E., Hawley, John A. and Hoffman, Nolan J.. (2021). Mice with whole-body disruption of AMPK-glycogen binding have increased adiposity, reduced fat oxidation and altered tissue glycogen dynamics. International Journal of Molecular Sciences. 22(17), p. Article: 9616. https://doi.org/10.3390/ijms22179616
PhosR enables processing and functional analysis of phosphoproteomic data
Kim, Hani Jieun, Kim, Taiyun, Hoffman, Nolan J., Xiao, Di, James, David E., Humphrey, Sean J. and Yang, Pengyi. (2021). PhosR enables processing and functional analysis of phosphoproteomic data. Cell Reports. 34, p. 108771. https://doi.org/10.1101/2020.08.31.276329
Omega-3 polyunsaturated fatty acids mitigate palmitate-induced impairments in skeletal muscle cell viability and differentiation
Tachtsis, Bill, Whitfield, Jamie, Hawley, John A. and Hoffman, Nolan J.. (2020). Omega-3 polyunsaturated fatty acids mitigate palmitate-induced impairments in skeletal muscle cell viability and differentiation. Frontiers in Physiology. 11, pp. 1-13. https://doi.org/10.3389/fphys.2020.00563
Genetic loss of AMPK-glycogen binding destabilizes AMPK and disrupts metabolism
Hoffman, Nolan J., Whitfield, Jamie, Janzen, Natalie R., Belhaj, Mehdi R., Galic, Sandra, Murray-Segal, Lisa, Smiles, William J., Ling, Naomi X. Y., Dite, Toby A., Scott, John W., Oakhill, Jonathan S., Brink, Robert, Kemp, Bruce E. and Hawley, John A.. (2020). Genetic loss of AMPK-glycogen binding destabilizes AMPK and disrupts metabolism. Molecular Metabolism. 41, pp. 1-13. https://doi.org/10.1016/j.molmet.2020.101048
Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry
Nelson, Marin E., Parker, Benjamin L., Burchfield, James G., Hoffman, Nolan J., Needham, Elise J., Cooke, Kristen C., Naim, Timur, Sylow, Lykke, Ling, Naomi X. Y., Francis, Deanne, Norris, Dougall M., Chaudhuri, Rima, Oakhill, Jonathan S., Richter, Erik A., Lynch, Gordon S., Stockli, Jacqueline and James, David E.. (2019). Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry. The EMBO Journal. 38(24), pp. 1 - 20. https://doi.org/10.15252/embj.2019102578
High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice
Burchfield, James G., Kebede, Melkam A., Meoli, Christopher C., Stockli, Jacqueline, Whitworth, P. Tess, Wright, Amanda L., Hoffman, Nolan John, Minard, Annabel Y., Ma, Xiuquan, Krycer, James R., Nelson, Marin E., Tan, Shi-Xlong, Yau, Belinda, Thomas, Kristen C., Wee, Natalie K.Y., Khor, Ee-Cheng, Enriquez, Ronaldo F., Vissel, Bryce, Biden, Trevor J., ... Fazakerley, Daniel J.. (2018). High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry. 293(15), pp. 5731 - 5745. https://doi.org/10.1074/jbc.RA117.000808
Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance
Fazakerley, Daniel J., Chaudhuri, Rima, Yang, Pengyi, Maghzal, Ghassan J., Thomas, Kristen C., Krycer, James R., Humphrey, Sean J., Parker, Benjamin, Fisher-Wellman, Kelsey H., Meoli, Christopher C., Hoffman, Nolan, Diskin, Ciana, Burchfield, James G., Cowley, Mark J., Kaplan, Warren, Modrusan, Zora, Kolumam, Ganesh, Yang, Jean Y. H., Chen, Daniel L., ... James, David E.. (2018). Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. eLife. 7, pp. 1 - 38. https://doi.org/10.7554/eLife.32111
Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism
Janzen, Natalie, Whitfield, Jamie and Hoffman, Nolan. (2018). Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism. International Journal of Molecular Sciences. 19(11), pp. 1 - 18. https://doi.org/10.3390/ijms19113344
High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans
Leckey, Jill J., Hoffman, Nolan J., Parr, Evelyn B., Devlin, Brooke L., Trewin, Adam J., Stepto, Nigel K., Morton, James P., Burke, Louise M. and Hawley, John A.. (2018). High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. FASEB Journal. 32(6), pp. 2979-2991. https://doi.org/10.1096/fj.201700993R
Metabolomic analysis of insulin resistance across different mouse strains and diets
Stockli, Jacqueline, Fisher-Wellman, Kelsey H., Chaudhuri, Rima, Zeng, Xiao-Yi, Fazakerley, Daniel J., Meoli, Christopher C., Thomas, Kristen C., Hoffman, Nolan, Mangiafico, Salvatore P., Xirouchaki, Chrysovalantou E., Yang, Chieh H., Ilkayeva, Olga, Wong, Kari, Cooney, Gregory J., Andrikopoulos, Sofianos, Muoio, Deborah M. and James, David E.. (2017). Metabolomic analysis of insulin resistance across different mouse strains and diets. Journal of Biological Chemistry. 292(47), pp. 19135 - 19145. https://doi.org/10.1074/jbc.M117.818351
The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs
Dite, Toby A., Ling, Naomi, Scott, John W., Hoque, Ashfaqul, Galic, Sandra, Parker, Benjamin L., Ngoei, Kevin R.W., Langendorf, Christopher G., O'Brien, Matthew, Kundu, Mondira, Viollet, Benoit, Steinberg, Gregory R., Sakamoto, Kei, Kemp, Bruce and Oakhill, Jonathan S.. (2017). The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Nature Communications. 8(571), pp. 1 - 14. https://doi.org/10.1038/s41467-017-00628-y
Omics and exercise : Global approaches for mapping exercise biological networks
Hoffman, Nolan John. (2017). Omics and exercise : Global approaches for mapping exercise biological networks. Cold Spring Harbor Perspectives in Medicine. 7(10), pp. 1-17. https://doi.org/10.1101/cshperspect.a029884
mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3
Kleinert, Maximilian, Parker, Benjamin L., Chaudhuri, Rima, Fazakerley, Daniel J., Serup, Annette, Thomas, Kristen C., Krycer, James R., Sylow, Lykke, Fritzen, Andreas M., Hoffman, Nolan John, Jeppesen, Jacob, Schjerling, Peter, Ruegg, Markus A., Kiens, Bente, James, David E. and Richter, Erik A.. (2016). mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism. 5(8), pp. 646 - 655. https://doi.org/10.1016/j.molmet.2016.06.007
Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle
Lee-Young, Robert S., Hoffman, Nolan John, Murphy, Kate T., Henstridge, Darren C., Samocha-Bonet, Dorit, Siebel, Andrew L., Iliades, Peter, Zivanovic, Borivoj, Hong, Yet H., Colgan, Timothy D., Kraakman, Michael J., Bruce, Clinton R., Gregorevic, Paul, McConell, Glenn K., Lynch, Gordon S., Drummond, Grant R., Kingwell, Bronwyn A., Greenfield, Jerry R. and Febbraio, Mark A.. (2016). Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle. Molecular Metabolism. 5(11), pp. 1083 - 1091. https://doi.org/10.1016/j.molmet.2016.09.002
Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates
Hoffman, Nolan John, Parker, Benjamin L., Chaudhuri, Rima, Fisher-Wellman, Kelsey H., Kleinert, Maximilian, Humphrey, Sean J., Yang, Pengyi, Holliday, Mira, Trefely, Sophie, Fazakerley, Daniel J., Stöckli, Jacqueline, Burchfield, James G., Jensen, Thomas E., Jothi, Raja, Kiens, Bente, Wojtaszewski, Jørgen F. P., Richter, Erik A. and James, David E.. (2015). Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metabolism. 22(5), pp. 922 - 935. https://doi.org/10.1016/j.cmet.2015.09.001
Dataset from the global phosphoproteomic mapping of early mitotic exit in human cells
Rogers, Samuel, McLoy, Rachel A., Parker, Benjamin L., Chaudhuri, Rima, Gayevskiy, Velimir, Hoffman, Nolan John, Watkins, D. Neil, Daly, Roger J., James, David E. and Burgess, Andrew. (2015). Dataset from the global phosphoproteomic mapping of early mitotic exit in human cells. Data in Brief. 5, pp. 45 - 52. https://doi.org/10.1016/j.dib.2015.08.010
The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle
Stockli, Jacqueline, Meoli, Christopher C., Hoffman, Nolan John, Fazakerley, Daniel J., Pant, Himani, Cleasby, Mark E., Ma, Xiuquan, Kleinert, Maximilian, Brandon, Amanda E., Lopez, Jamie A., Cooney, Gregory J. and James, David E.. (2015). The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle. Diabetes. 64(6), pp. 1914 - 1922. https://doi.org/10.2337/db13-1489
Global phosphoproteomic mapping of early mitotic exit in human cells identifies novel substrate dephosphorylation motifs
McLoy, Rachael A., Parker, Benjamin L., Rogers, Samuel, Chaudhuri, Rima, Gayevskiy, Velimir, Hoffman, Nolan John, Ali, Naveid, Watkins, D. Neil, Daly, Roger J., James, David E., Lorca, Thierry, Castro, Anna and Burgess, Andrew. (2015). Global phosphoproteomic mapping of early mitotic exit in human cells identifies novel substrate dephosphorylation motifs. Molecular and Cellular Proteomics. 14(8), pp. 2194 - 2212. https://doi.org/10.1074/mcp.M114.046938
Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection
Parker, Benjamin L., Shepherd, Nicholas E., Trefely, Sophie, Hoffman, Nolan John, White, Melanie Y., Engholm-Keller, Kasper, Hambly, Brett D., Larsen, Martin R., James, David E. and Cordwell, Stuart J.. (2014). Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection. Journal of Biological Chemistry. 289(37), pp. 25890 - 25906. https://doi.org/10.1074/jbc.M114.556035
Grb10 deletion enhances muscle cell proliferation, differentiation and GLUT4 plasma membrane translocation
Mokbel, Nancy, Hoffman, Nolan John, Girgis, Christian M., Small, Lewin, Turner, Nigel, Daly, Roger J., Cooney, Gregory J. and Holt, Lowenna J.. (2014). Grb10 deletion enhances muscle cell proliferation, differentiation and GLUT4 plasma membrane translocation. Journal of Cellular Physiology. 229(11), pp. 1753 - 1764. https://doi.org/10.1002/jcp.24628
Structural basis for phosphorylation and lysine acetylation crosstalk in a kinase motif associated with myocardial ischemia and cardioprotection
Parker, Benjamin L., Shepherd, Nicholas E., Trefely, Sophie, Hoffman, Nolan John, White, Melanie Y., Engholm-Keller, Kasper, Hambly, Brett D., Larsen, Martin R., James, David E. and Cordwell, Stuart J.. (2014). Structural basis for phosphorylation and lysine acetylation crosstalk in a kinase motif associated with myocardial ischemia and cardioprotection. Journal of Biological Chemistry. 289(37), pp. 25890 - 25906. https://doi.org/10.1074/jbc.M114.556035
Transient silencing of a type IV P-type ATpase results in decreased GLUT4 translocation and altered signaling of MAPK and PI3K pathways
Hurst, Sarah, Hoffman, Nolan, Elmendorf, Jeffrey and Dhar, Madhu. (2014). Transient silencing of a type IV P-type ATpase results in decreased GLUT4 translocation and altered signaling of MAPK and PI3K pathways. In Obesity Epidemic pp. 1 - 21 CreateSpace Independent Publishing Platform.
Chromium enhances insulin responsiveness via AMPK
Hoffman, Nolan John, Penque, Brent A., Habegger, Kirk M., Sealls, Whitney, Tackett, Lixuan and Elmendorf, Jeffrey S.. (2014). Chromium enhances insulin responsiveness via AMPK. Journal of Nutritional Biochemistry. 25(5), pp. 565 - 572. https://doi.org/10.1016/j.jnutbio.2014.01.007
Ceramide accumulation in L6 skeletal muscle cells due to increased activity of ceramide synthase isoforms has opposing effects on insulin action to those caused by palmitate treatment
Frangioudakis, Georgia, Diakanastasis, Barbara, Liao, Bing-Qing M., Saville, Jennifer T., Hoffman, Nolan John, Mitchell, Todd W. and Schmitz-Peiffer, Carsten. (2013). Ceramide accumulation in L6 skeletal muscle cells due to increased activity of ceramide synthase isoforms has opposing effects on insulin action to those caused by palmitate treatment. Diabetologia. 56(12), pp. 2697 - 2701. https://doi.org/10.1007/s00125-013-3035-5
AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol
Hoffman, Nolan John, Habegger, Kirk M., Ridenour, Colin M., Broznick, Joseph T. and Elmendon, Jeffrey S.. (2012). AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology. 153(5), pp. 2130 - 2141. https://doi.org/10.1210/en.2011-2099
Signaling, cytoskeletal and membrane mechanisms regulating GLUT4 exocytosis
Hoffman, Nolan John and Elmendorf, Jeffrey S.. (2011). Signaling, cytoskeletal and membrane mechanisms regulating GLUT4 exocytosis. Trends in Endocrinology and Metabolism. 22(3), pp. 110 - 116. https://doi.org/10.1016/j.tem.2010.12.001