Publication Date

2014

Abstract

We tested key predictions of a theoretical model positing that confusion, which accompanies a state of cognitive disequilibrium that is triggered by contradictions, conflicts, anomalies, erroneous information, and other discrepant events, can be beneficial to learning if appropriately induced, regulated, and resolved. Hypotheses of the model were tested in two experiments where learners engaged in trialogues on scientific reasoning concepts in a simulated collaborative learning session with animated agents playing the role of a tutor and a peer student. Confusion was experimentally induced via a contradictory-information manipulation involving the animated agents expressing incorrect and/or contradictory opinions and asking the (human) learners to decide which opinion had more scientific merit. The results indicated that self-reports of confusion were largely insensitive to the manipulations. However, confusion was manifested by more objective measures that inferred confusion on the basis of learners’ responses immediately following contradictions. Furthermore, whereas the contradictions had no effect on learning when learners were not confused by the manipulations, performance on multiple-choice posttests and on transfer tests was substantially higher when the contradictions were successful in confusing learners. Theoretical and applied implications are discussed.

School/Institute

Institute for Positive Psychology and Education

Document Type

Journal Article

Access Rights

ERA Access

Access may be restricted.

Share

COinS