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Joint actions, such as music and dance, rely crucially on the ability of two, or more, agents
to align their actions with great temporal precision. Within the literature that seeks to
explain how this action alignment is possible, two broad approaches have appeared. The
first, what we term the entrainment approach, has sought to explain these alignment
phenomena in terms of the behavioral dynamics of the system of two agents. The second,
what we term the emulator approach, has sought to explain these alignment phenomena
in terms of mechanisms, such as forward and inverse models, that are implemented
in the brain. They have often been pitched as alternative explanations of the same
phenomena; however, we argue that this view is mistaken, because, as we show, these
two approaches are engaged in distinct, and not mutually exclusive, explanatory tasks.
While the entrainment approach seeks to uncover the general laws that govern behavior
the emulator approach seeks to uncover mechanisms. We argue that is possible to do
both and that the entrainment approach must pay greater attention to the mechanisms
that support the behavioral dynamics of interest. In short, the entrainment approach must
be transformed into a neuroentrainment approach by adopting a mechanistic view of
explanation and by seeking mechanisms that are implemented in the brain.
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INTRODUCTION
The ability of people to engage in exquisitely coordinated action is
a striking feature of collaborative endeavors, like music and dance.
In these pursuits, people temporally and spatially align their
actions with the actions of others, and failure to do so may be dis-
ruptive to the esthetic qualities of the performance. If one dancer
was to fall behind, or rush ahead, such that they did not move
in time with the other dancers it may lead to a breakdown in the
performance. How is it that people are able to align their actions
with such great precision? What are the processes that make this
possible? And what is the best approach to begin to understand
these phenomena? Ensemble music and dance performance are
examples of the broader category of socially coordinated actions.
Socially coordinated actions are any actions in which two or
more agents are required to coordinate—for example, temporally
align—their actions. At least two approaches have been adopted
in building an understanding of how socially coordinated actions
are achieved. The first, we will call the entrainment approach,
which draws inspiration from the dynamics of coupled oscilla-
tors. The second, we will call the emulator approach, which views
socially coordinated action as relying on predictive processes
that allow agents to anticipate, and thus align with, the actions
of their co-actors (Wilson and Knoblich, 2005; Colling et al.,
2013a). The emulator approach tries to explain how the physi-
cal facts of the system—the system’s parts, their organization, and
their interactions—gives rise to the system’s behavior—that is, it
aims to provide mechanistic explanations (Craver, 2007; Bechtel,

2008). These two approaches are often conceived of as alterna-
tive or competing approaches to understanding a single process
(Chemero, 2001; Kaplan and Bechtel, 2011; Schmidt et al., 2011,
2014; Stepp et al., 2011). For example, Schmidt et al. (2014) state
that research on social entrainment that uses the tools of nonlin-
ear dynamical systems (what we term the entrainment approach)
demonstrate that there is no need for emulator mechanisms to
explain this phenomenon. However, as we will show, the two
approaches have distinct explanatory aims and seek to do their
explaining in different, but not mutually exclusive, ways. Thus,
rather than being viewed as alternatives, the two approaches
should be viewed as complementary, with each approach play-
ing a distinct role in the larger aim of understanding socially
coordinated action.

The language of entrainment, a term that originates in physics,
has recently been introduced into the psychological literature.
Entrainment has been used to describe a wide variety of phe-
nomena that involve two interacting systems that, over time,
approach each other in the similarity of their behavior. For exam-
ple, entrainment has been used to describe the tendency for two
interacting individuals to approach the same emotional or affec-
tive state over the course of their interaction. It has also been used
to describe the tendency for the movements of two individuals’
limbs to adopt the same period and/or phase during coordinated
rhythmic movements (see Phillips-Silver and Keller, 2012 for a
review of entrainment phenomena). While this is quite a diverse
range of phenomena, what they each have in common is a coming
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together and aligning of the behavior or states of two interacting
systems that occurs as a consequence of their interaction.

One of the earliest scientific observations of entrainment phe-
nomena was that two interacting, or coupled, oscillators will tend
to adjust their behavior over time so that they become synchro-
nized in phase and/or period. The first recorded observation
of these phenomena came from Huygens, who observed that
pendulum clocks, when placed side-by-side on a wall, tended
to synchronize in period (Bennett et al., 2002). Furthermore,
if the pendulums initially exhibited an 180◦ phase relationship
they would tend to return to this phase relationship if one of
the pendulums was perturbed. What these observations show is
that when two oscillators (pendulums in the clocks) are coupled
(placed together on the same wall) the movements of these two
oscillators become entrained and they tend to be attracted toward
particular stable patterns of coordination (talk of attractors will
feature heavily in explanations offered by the entrainment frame-
work outlined below). For example, Huygens’s clocks that initially
exhibited an 180◦ phase relationship were attracted toward this
pattern of coordination such that they would return to this
pattern when perturbed.

While Huygens’s observations of entrainment were made in a
purely artificial, mechanical system, many natural systems also
seem to behave like coupled oscillators. For example, entrain-
ment behavior has been observed in interacting fireflies flashing
their lights (e.g., Buck, 1988), in rhythmic limb movements (e.g.,
Kelso, 1984; Mechsner et al., 2001), in music and dance (e.g.,
Large, 2000), and in other forms of socially coordinated actions,
where two individuals attempt to coordinate their actions (e.g.,
Schmidt et al., 1990, 2011; Marsh et al., 2009). With such a wide
variety of phenomena subsumed under the term entrainment, it
does raise a question of what value the term might have. What can
we gain from using the term entrainment so widely? For instance,
might it be possible to gain some explanatory purchase on one
entrainment phenomenon by using the same explanatory tools
of similar entrainment phenomena? This has been the approach
adopted by those working on the behavioral dynamics of coor-
dinated actions, such as rhythmic inter-limb coordination (e.g.,
Kelso, 1984) and socially coordinated actions (e.g., Schmidt et al.,
2011). This approach involves taking the explanatory tools that
have been applied to the entrainment of simple coupled oscilla-
tors and applying them to coordination in more complex systems
like rhythmic limb movements.

In this paper, we argue that the entrainment approach and
the emulator approach have distinct, but compatible aims. We
will make this argument by way of examples from the empirical
literature. In this case, the examples from the empirical litera-
ture serve to illustrate the two styles of explanation. Importantly,
our argument does not turn on the specifics of the explanada or
the specifics of the data presented; rather, the reader is encour-
aged to pay attention to the style of explanation offered by
each approach. With this in mind, we begin by outlining the
entrainment approach and examine how it has been applied to
coordinated behavior. Following this, we outline some key find-
ings within the entrainment approach to demonstrate the nature
of the explanations on offer, namely, general behavioral laws. We
argue that this type of explanation leaves certain explanatory gaps

in the causal story of the system’s behavior. We then introduce
the emulator approach, and highlight the different kind of expla-
nation offered by this approach. In particular, we show how the
emulator framework is built on certain physical facts about the
brain, the kind of physical facts that do not enter into explana-
tions offered by the entrainment approach. Doing so, we hope
to demonstrate that explanations that only offer predictions of
the regularities of a system at a behavioral level leave key ques-
tions unanswered, such as why these regularities exist and what
the neural mechanisms are that give rise to them. In short, what
is needed is a move away from exclusively studying entrainment
at the behavioral level and a move toward what we term the “neu-
roentrainment” approach. That is, we argue for an approach to
explaining entrainment that adopts the explanatory style of the
emulator approach, but not necessarily the explanations of the
emulator approach. This is not to discount behavioral work con-
ducted within the entrainment approach. This work is important
for constraining the general kind of mechanisms that underlie
the phenomena of interest—that is, mechanisms that are capa-
ble of producing the observed behavioral dynamics. Viewed this
way, entrainment and motor emulation are not alternative expla-
nations; rather they can work to guide each other in developing
multilevel—brain to behavior—explanations.

ENTRAINMENT EXPLANATIONS AND GENERAL LAWS
In his work with pendulum clocks, Huygens attempted to provide
an explanation for the behavior of the clocks in purely physical
terms. He explained the tendency for two pendulums to become
synchronized in terms of being caused by vibrations sent along
the wall. This causal explanation could, for example, explain why
two clocks on the same wall would tend to become synchronized
while two clocks on different walls would not, and why two clocks
placed inline with each other would synchronize while two clocks
placed perpendicular to each other would not. This type of expla-
nation makes reference to the physical parts of the system—the
pendulums and the wall—the organization of these parts—the
placement of the clocks relative to the wall—and the operations
performed by the parts—the transmission of the vibrations sent
along the wall. The aim of this explanation is not to formulate
precise predictions about how the dynamics of the system unfold
over time; indeed, it might be difficult to formulate such predic-
tions on the basis of this kind of explanation. For Huygens to
make such predictions he would have needed the mathematics of
differential equations, and Newtown’s work that led to the devel-
opment of these mathematical tools had only just begun (Bennett
et al., 2002). Had Huygens been armed with these mathematical
tools then it would have been possible for him to abstract away
from the physical facts of the system and provide a formal model
of the general laws that govern the dynamics of coupled oscilla-
tors. The apparent tension between these two tasks—providing a
causal explanation that makes reference to the interacting parts
of a physical system and uncovering the general laws that capture
the behavior of a system—will be a major theme of this paper. It
is this second approach, abstracting away from the physical facts
of the system and attempting to uncover the general laws that
capture the dynamics of the system, that has been adopted by
those working within the entrainment approach. In the section
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that follows we outline how the entrainment approach has gone
beyond pendulum clocks to formally modeling the dynamics of
socially coordinated actions.

KEY DEVELOPMENTS FOR THE ENTRAINMENT APPROACH
Some of the earliest experimental work within the entrainment
approach was reported by Kelso (1984). The basic design of these
experiments involved participants extending their forearms out
in front of themselves with their wrists parallel to the ground
and rotating their wrists in the horizontal plane. Participants
were asked to begin cycling their hands slowly in an asymmet-
ric mode (with one hand facing down while the other faced
up) while slowly increasing the speed of rotation. When cycling
speed reached a critical point there was a rapid breakdown of the
coordination, with coordination rapidly being re-established in
a symmetric mode. That is, once cycling speed reached a critical
point there was a phase-transition from an anti-phase mode of
coordination to an in-phase mode.

Haken et al. (1985) were able to formalize this finding using
the mathematics of dynamical systems and the tools of dynam-
ical modeling. The model developed by Haken et al.—the HKB
model—was able to capture all the observed dynamics of the sys-
tem of two hands by using only two simple parameters—cycling
speed (1/k) and the relative phase (�) of the two effectors. The
equation they devised exhibited all the characteristics of the coor-
dinated limbs described by Kelso (1984). In particular, when
the parameter k was set at relatively high values—which corre-
spond to slow cycling speeds—two stable patterns of coordination
emerged, an in-phase pattern (� = 0) and an anti-phase pat-
tern (� = π). When the parameter k was set to relatively low
values—which correspond to higher cycling speeds—only one
coordination pattern was stable, the in-phase pattern (� = 0).
The change in relative phase across time, for various cycling
speeds, can be seen in Figure 1A while Figure 1B shows the stable
modes of coordination for increasing cycling speeds (decreasing
values of k)1.

For our present purposes, what is important here are not the
specifics of the HKB model itself, but the general form of the
explanation it provides. Once the dynamics of the system have
been described (whether they have been formally modeled or
whether the attractors have merely been identified) it is possible
to abstract away from the physical facts of the system and explain
the tendency of the system to settle into particular stable patterns
of coordination in terms of the specific attractors that are present
in the dynamical description of the system. For example, in the
HKB model, the system has attractors at in-phase and anti-phase
relationships when cycling speed is low. Once cycling speed passes
a particular threshold value the anti-phase attractor is destroyed
and only the in-phase attractor remains (see Figure 1B)

Originally, it was proposed that the stability of in-phase coor-
dination might be the result of a bias toward symmetry of
co-activated homologous muscles due to interactions occurring
in the motor cortices of the brain (e.g., Johnson et al., 1998).
However, because entrainment is a common feature of systems

1The Matlab code for generating these figures is available at http://research.

colling.net.nz/code/hkb-demo

FIGURE 1 | (A) Relative phase as a function of time for various initial phase
relationships. High values of k represent slow cycling speeds and low
values of k represent fast cycling speeds. (B) Stable patterns of
coordination (attractors) as a function of decreasing values of k (increasing
cycling speeds).

of coupled oscillators, and because the HKB equations make no
reference to the physical parts of the system, researchers have
sought similar systems that might also exhibit HKB-like behavior
despite consisting of different physical parts. One such example
is described by Mechsner et al. (2001). They suggested that acti-
vation of homologous muscles might not be necessary for a bias
toward the in-phase pattern of coordination to appear. To exam-
ine this, they independently manipulated motor symmetry and
perceptual symmetry by asking participants to perform a finger-
wagging task with either both hands oriented the same way or
with one palm-up and the other palm-down. Participants moved
their index fingers side-to-side (in a wagging motion) either
visually in-phase/anti-phase or motorically in-phase/anti-phase
(motorically in-phase refers to contracting the same muscles in
both hands). The results showed that the movements of the two
fingers tended to settle into a stable pattern of coordination when
they were visually in-phase, even when they were not motorically
symmetrical.

Taken together, the findings of Mechsner et al. (2001) and
the earlier work of Kelso (1984) and Haken et al. (1985) suggest
that when two oscillators (for example, oscillatory limb move-
ments) are coupled there is a tendency for the two oscillators to
fall into a stable pattern of coordination regardless of the phys-
ical parts of the system. Thus, two physically disparate systems
can be captured using the same explanatory tools, namely those
of entrainment.

One particularly remarkable case of a system that differs radi-
cally from the case of inter-limb coordination, and yet exhibits the
same dynamics, is found in socially coordinated action. Schmidt
et al. (1990) report a series of experiments in which they were
able to demonstrate that two limbs belonging to two distinct
individuals obey the same dynamical laws as two limbs belong-
ing to a single individual, such as the cases described by Kelso
(1984) and Mechsner et al. (2001). In their experiments, Schmidt
et al. (1990) asked two participants to sit side-by-side and to
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swing the lower part of their outside leg from side-to-side in
time with a metronome. Participants were then asked to coordi-
nate their movements with those of their partner so that the two
legs were either in the same part of the cycle at the same time
(in-phase relationship) or at opposite places in the cycle (anti-
phase). Consistent with the predictions of the HKB model, and
the findings from inter-limb coordination, it was found that both
in-phase coordination and anti-phase coordination were stable at
low cycling rates but that anti-phase coordination grew unstable
as cycling rates increased.

EXPLANATIONS OF ENTRAINMENT WITHOUT PHYSICAL FACTS
In the examples outlined above, physically disparate systems have
been subsumed within a single explanatory framework. The ten-
dency of the systems to settle into particular stable patterns
of coordination can be explained by the presence of particular
attractors at those phase relationships. In the case of bimanual
inter-limb coordination and socially coordinated action the pres-
ence of attractors at these phase relationships can be explained
by the fact that these systems are governed by a general law,
as described by the HKB equations. The same style of explana-
tion can also be proffered for Huygens’s clocks. However, this
explanation is of a kind quite different to that which Huygens
originally developed. Huygens offered an explanation in physi-
cal terms that made reference to the clocks sending vibrations
through the wall (Bennett et al., 2002). These physical facts about
the system—that the clocks vibrate and that these vibrations are
transmitted by the wall—are absent in an explanation invoking
the presence of particular attractors. While Huygens’s explana-
tion may lack the predictive power of a formal model derived
from the mathematics of coupled oscillators, it does provide an
explanation about why, for example, clocks on the same wall
become entrained while clocks on different walls do not. The
HKB equation makes no reference to the physical facts of the sys-
tems it describes—indeed it applies to physically very different
systems—but it is able to predict the behavior of these systems
very accurately. What the HKB equations fail to do is to pro-
vide a reason why these systems should even behave like a system
of coupled oscillators that exhibit HKB dynamics in the first
place. By analogy to Huygens explanation, what is serving as the
wall through which vibrations can be sent? How do the inter-
acting parts of the system give rise to this behavior? Some have
argued that models like the HKB preclude breaking the system
down into its component parts (Chemero, 2001). This is because
there are no parameters in the equations that map onto parts
of the system. Furthermore, because of the non-linear nature of
the system it is not possible to break the behavior of the sys-
tem down into component equations that can simply be added
together. The two kinds of explanations, the dynamical model,
of which the HKB is one example, and an explanation of the
style offered by Huygens seem to be answering two different
questions.

While the entrainment approach has attempted to abstract
away from the physical facts of the system in favor of finding the
general laws that govern the behavior of the system, the emulator
approach has attempted to make sense of a system’s behavior by
examining how the physical features of the system give rise to the

behavior. It is this approach that we turn our attention to in the
next section.

THE EMULATOR APPROACH AND MECHANISTIC
EXPLANATION
Where the entrainment approach to understanding socially coor-
dinated action has attempted to abstract away from the physical
facts by modeling coordination dynamics as coupled oscilla-
tors, the emulator approach has instead attempted to under-
stand socially coordinated action by examining the mechanism
that gives rise to the phenomenon. In particular, the emulator
approach has sought to explain socially coordinated action in
terms of inverse and forward models (Wolpert et al., 2003; Wilson
and Knoblich, 2005; Csibra, 2008; Keller, 2012; Colling et al.,
2013a). Many different formulations of the emulator approach
exist, and each approach may differ in terms of the specific details.
However, nothing in our argument turns on these details and,
therefore, we outline something like a generic account drawing
on specific details outlined in Colling et al. (2013a) and Wilson
and Knoblich (2005) only when necessary. To show how it is the
case that the emulator approach proposes mechanistic explana-
tions, this section will first give an outline of the basic processes
of inverse and forward models, which will be key to understand-
ing the function of emulators. Following this, we will explain
some of the functions that emulators perform, and we will show
how these processes might be implemented in the brain. Once
we have outlined the basics of emulators and some of their neu-
ral implementation, we will show how, by proposing that such a
mechanism supports socially coordinated action, it is possible to
make a number of predictions about the behavioral effects that
should be observable in different experimental contexts.

Inverse and forward models are terms borrowed from con-
trol theory to describe mechanisms that can be used to control
and predict the behavior of a system (for an introduction to con-
trol theory, see Golnaraghi, 2010). Inverse models are so named
because they perform an inverse mapping from a desired state
(or output) to the control commands necessary to produce that
output. In a simple example of a room heater, a goal state might
take the form of a particular room temperature. The control com-
mands would be the power sent to the heating element, and
they could be specified by an inverse model that maps room
temperature to power level; for example, a simple control knob
linked to a variable resistor where high resistance corresponds to
lower temperatures and low resistance corresponds to high tem-
peratures. While the controller, or inverse model, performs an
inverse mapping, the target system (also called the plant) per-
forms a forward mapping from control commands to the goal
state (See Figure 2A). That is, it transforms the increases in power
to increases in room temperature. Achieving the desired goal can
be fairly difficult in such a system, because the appropriate control
commands need to be specified exactly at the outset. If too much
power is sent to the heating element then the room will get too
hot and if not enough power is sent to the heating element then
the room will not reach the desired temperature. To avoid having
to specify the control commands precisely at the outset it is pos-
sible to include a sensor that measures the room temperature and
feeds this information back to the controller. This feedback can be
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FIGURE 2 | (A) A schematic of open loop control. (B) A schematic of
closed-loop control. (C) A schematic of pseudo-closed-loop control.

used to shut off the heating element when the room is getting too
hot and to increase power to the element when the room is too
cold (See Figure 2B).

In our simple example, it is clear that a control system using
feedback (also known as a closed-loop control system, in con-
trast to an open-loop system that does not use feedback; see
Grush, 1997) would be fairly successful at performing the task
of achieving and then maintaining a desired goal. However, the
system breaks down when accurate information can no longer be
received from the sensors. At least two types of sensor problems
can arise. First, information from the sensors might not actually
reflect the true state of the room temperature because of a tem-
poral lag that means the information sent back from the sensors
instead reflects the temperature of the room as it was some time in
the very recent past. Or second, the sensor readings may be intrin-
sically inaccurate because of, for example, sensor noise. Both of
these problems can be overcome by using a forward model.

A forward model performs the reverse mapping of an inverse
model and instead maps control commands to goal states. The
forward model acts as an emulator of the plant by replicating
its input–output relations. The forward model can be used to
overcome problems associated with inaccurate sensor readings
because information from the forward model can be substituted,
entirely or in part, for feedback from the sensors. When a con-
trol command is issued to the plant a copy can be sent to the
forward model (See Figure 2C). If the forward model is accurate
then its output should track the output of the plant. In our room
heater example, the room temperature increase produced by the
room heater would be tracked by a simulated room temperature
increase, and simulated sensor readings, produced by the forward
model. In the case of sensor noise, these simulated sensor readings
can be combined with actual sensor readings to produce a more
accurate estimate of the actual room temperature. And in the case

of delayed sensor readings, the simulated sensor readings can be
wholly substituted for the actual sensor readings. The actual sen-
sor readings can still be used as a training signal to ensure that
the simulated sensor readings accurately track the actual sensor
readings, but they no longer need to be used for control.

A key aspect of an emulator is that the plant can be taken off-
line so that it does not produce any actual output. For example,
the control commands, one copy of which is usually sent to the
heating element while the other is sent to the forward model, can
be sent to the forward model alone. In this way the system can
be used to simulate2 a heated room and to simulate a change in
temperature without producing any actual heating. Grush (1997)
suggests that this fact makes emulators useful in cognitive sys-
tems because emulators make it possible for cognitive systems to
engage in planning or to entertain counterfactuals by simulating
or representing possible states of the world.

EMULATORS IN ACTION CONTROL
Inverse and forward models—together known as internal mod-
els—are thought to play a vital role in action control (Wolpert
et al., 1998). Inverse models act as controllers that are able
to transform a desired limb trajectory into a series of motor
commands necessary for producing that trajectory. The motor
command and the desired trajectory are specified in different
coordinate frames. The motor command specifies, for example,
changes in the joint angles over time while the goal trajectory is
specified in, for example, changes in visuo-spatial location over
time. A key function of the inverse model is to transform or map
trajectories in one coordinate frame into trajectories specified in
another coordinate frame, just as the inverse model in the room-
heating example—the control knob—mapped temperatures to
resistance level.

Forward models, on the other hand, replicate the dynamics of,
for example, the limb being controlled and, therefore, they can
be used to predict how the limb will respond to the control com-
mands issued by the inverse model. Because of sensory delays in
obtaining feedback signals from the periphery, using a forward
model to predict how the limb will move3in response to particular
control commands makes it possible to engage in planning with-
out needing to specify the control commands precisely at the start
of the movement (see, Wolpert and Kawato, 1998). Predictions
from the forward model can also be used to estimate the state
of the limb, by combining forward model predictions with sen-
sory information (Wolpert, 1997). Running the forward model
offline—that is, without producing motor output—can also be
used to internally simulate limb movements; that is, to engage in
motor imagery (Grush, 2004). And, as we will later show, inter-
nally simulating actions may also support social coordination of
action.

How might inverse and forward models be implemented in the
brain? While a complete treatment of the neural machinery that

2Simulate is here used as a general term not to refer to a specific class of
theories—for example, simulation theories (see Grush, 2004).
3Predictions about limb movements can also be fed into a second forward
model that predicts the sensory feedback that will result from a particular
movement (Wolpert, 1997).
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might support inverse and forward models—an area that is still
undergoing active research—is outside the scope of this paper, it
is possible to provide an overview of one aspect of these internal
models that is, conceptually, quite straightforward (for a recent
review of how internal models might be implemented in the brain
the reader is directed to Ito, 2008). This is the possible imple-
mentation of coordination transformation in the cerebellum. One
vital task performed by inverse and forward models is that they
map trajectories in one coordinate space (for example, trajectories
in visual space specified in spatial coordinates) onto trajectories
in another coordinate space (for example, trajectories in a motor
state-space). An early suggestion of how the brain might perform
coordinate transformation was prompted by findings about the
microarchitecture of the cerebellum (see Llinás, 1975 for an easy
introduction to the cerebellum). Churchland (1989) outlines a
simplified account of how the structure of the cerebellum might
be able to perform coordinate transformation. Mathematically, to
transform an n-dimensional input vector into an m-dimensional
output vector it is necessary to multiply the input vector by an
m × n dimensional transformation matrix. To do this, the first
value of the m dimensional vector is multiplied by each of the n
values in the first column of the m × n matrix. This column is
then summed to yield the first value of the n dimensional vector.
The process is then repeated for all the values of the input vector.
In the example shown in Equation 1, a in the input vector is mul-
tiplied by p1 then p2, p3, and p4. These values are then summed to
yield the value x. This process is then repeated to yield the value
for y, and then for z.

[
a b c d

] ·

⎡
⎢⎢⎣

p1 q1 r1

p2 q2 r2

p3 q3 r3

p4 q4 r4

⎤
⎥⎥⎦ =

⎡
⎣

x
y
z

⎤
⎦

Equation 1. Matrix multiplication
The structure of the cerebellum may be ideally suited to perform-
ing this calculation. In the schematic in Figure 3, each of the four
parallel fibers synapse onto the dendrites of three Purkinje cells.
These synapses act as a transformation matrix where the summed
activity from the four parallel fibers on one Purkinje cell deter-
mines the output value of that Purkinje cell. When this is repeated
for all three Purkinje cells then this process transforms the three
input values into four output values. The input and output val-
ues can be coded in terms of, for example, spiking rates, and the
strength of the connection at the synapses can be used to specify
the values of the transformation matrix. Since activity across the
entire system happens in parallel this method performs the coor-
dinate transformation rapidly enough for it to plausibly support
coordination transformation in the action control system.

As with the discussion of the HKB model, what is impor-
tant here are not the exact details of the mechanism proposed
to underlie action control but rather the nature of the expla-
nation offered by this account. For example, the coordination
transformation mechanism may not be implemented in the cere-
bellum exactly as described above. And the details of what the
forward model predicts—whether it predicts motor dynamics,

FIGURE 3 | A schematic of the cerebellum peforming matrix

multiplication.

sensory feedback, or both—are still open for empirical investiga-
tion (for example, Cisek, 2005). Rather, what is important is the
general explanatory scheme whereby a function (motor control)
is decomposed into component parts (inverse and forward mod-
els) and interactions between those parts—for example, feedback.
These component parts can be broken down further into sub-
parts and their interactions (coordinate transformation) and their
neural implementation can be uncovered (in the microstructure
of the cerebellum). As a result, the nature of the function is
determined by the mechanism that implements it. The search for
the mechanism is constrained by the nature of the function the
mechanism is thought to implement. This is in contrast to the
explanatory scheme favored by the entrainment approach where
the task of explanation is to develop an account of the general
laws that govern particular behaviors. Of course it is possible to
do both (in the final section we will sketch how this might be
possible), but it is the attempt to understand social motor coor-
dination in terms of mechanisms that is the explanatory scheme
favored by the motor emulation approach.

MOTOR EMULATION AND SOCIALLY COORDINATED ACTIONS
According to the emulator framework, social motor coordination
is supported by the same mechanisms that underlie action control
(Wilson and Knoblich, 2005; Sebanz and Knoblich, 2009; Colling
et al., 2013a). This proposal is partly based on the finding that
overlapping neural networks are activated during action produc-
tion and action observation (Gallese et al., 1996). In particular,
premotor, parietal, and cerebellar regions are active both when
observing actions and when performing actions (Molenberghs
et al., 2012). Neurons in the superior temporal sulcus appear to
be active during action observation only and they lack the motor
properties of classical mirror neurons (Rizzolatti and Craighero,
2004; Molenberghs et al., 2012); therefore, these regions might be
involved in the visual analysis of observed actions (Csibra, 2008).
On the basis of the discovery that regions associated with action
control are also activated during action observation, it has been
suggested that these regions might play a role in prediction of
observed actions, analogous to the role they may play during the
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performance of actions. In particular, it has been suggested that
the predictive mechanisms (i.e., forward models), outlined above,
that are involved in generating predictions during action per-
formance may also be involved in generating predictions about
actions during action observation (Wilson and Knoblich, 2005;
Kilner et al., 2007; Colling et al., 2013a). Importantly, other
proposals about the function of mirror neurons have been put
forward (for example, Rizzolatti and Sinigaglia, 2010; Rizzolatti
and Fogassi, 2014). However, our aim here is not to argue for
a specific interpretation of mirror system function, but instead
to illustrate how the emulator framework proposes mechanisms
whose parts can be localized in the brain.

According to the general formulation of this account, visual
analysis of the observed action, and conjectures about the co-
acting agent’s putative goals and intentions, are fed through the
inverse model to generate a series of motor commands (Csibra,
2008; Jacob, 2008; Colling et al., 2013a). These motor commands
can then be fed into a forward model to generate a real-time pre-
diction about the unfolding action (Wilson and Knoblich, 2005;
Colling et al., 2013a). That is, the mechanisms that support action
control can be taken offline, and the observing agent can simulate
the actions of their co-actor by using their action control system
as an emulator.

Of particular interest for our current purposes are a series of
experiments that have sought to understand what role forward
models might play in socially coordinated action (Flach et al.,
2003; Colling et al., 2013b, 2014). Several other findings includ-
ing those involving self vs. other prediction (e.g., Knoblich and
Flach, 2001; Knoblich et al., 2002), self vs. other coordination
(Keller et al., 2007), self recognition (Flach et al., 2004; Repp and
Keller, 2010; Sevdalis and Keller, 2010), and the role of self kine-
matic knowledge in visual (Daprati et al., 2007) and auditory
(Repp and Keller, 2010) discrimination could be used to illus-
trate the kind of mechanistic explanation offered by the emulator
account. However, we have chosen the examples because of the
similarity in the paradigms used in these experiments and the
experiments outlined in the entrainment section and because of
the similarity of the phenomena being studied. These experiments
have attempted to find evidence of a role for motor emula-
tion in prediction of observed action by employing tasks that
require participants to coordinate their action production with
an observed action. These experiments are particularly relevant
because the methods employed in these studies are superficially
very similar to those employed in the entrainment approach. The
real-time prediction paradigm employed in these experiments, as
with the synchronization paradigm employed within the entrain-
ment approach (e.g., Schmidt et al., 1990) requires participants
to align a motor response with a motor response performed by
a conspecific. Both the emulator approach and the entrainment
approach try to explain coordination of action between individ-
uals; however, as we shall see, what the explanation looks like in
each approach is very different.

The logic of the real-time prediction paradigm is that if
observers are to align their responses with the actions of an
observed conspecific then they must first generate a predic-
tion about when specific features in the movement will occur.
(These are termed critical points and they usually occur when

the conspecifics movement changes, for example, in direction
from an upward movement to a downward movement). Further,
if the observer uses their own internal models for generating
these predictions then the accuracy of these predictions should
be influenced by the kinematics of the observer’s actions. That
is, observed actions that have the same kinematic properties as
the observer should be predicted more accurately, because the
dynamics of the observer’s forward model will more closely match
the observed action. Furthermore, if motor emulation requires
the observer to first map the observed actions onto their own
action system, then predictions should also be influenced by the
form of the observed actions. For example, if the observed actions
contain information about the configuration of the effectors
producing the movements then this should facilitate prediction
relative to the case where this information is missing but all
dynamic information remains. Note that these predicted effects
flow directly from the hypothesized mechanism. The entrain-
ment approach, which abstracts away from the mechanism, and
instead tries to understand social motor coordination by uncov-
ering the general laws that govern the dynamics of social motor
coordination, makes no such prediction.

The version of the real-time prediction paradigm employed
by Colling et al. (2014) was split into two phases. In the first
phase, participants were asked to perform a series of arm move-
ments as if drawing zigzag or wave shapes on a blackboard, while
their movements were recorded with motion capture. The peak
heights in the patterns were irregular and alternated from large to
small. In the second phase of the experiment, participants were
asked to view the motion capture recordings, rendered as ani-
mated mannequins and to align a produced action (a button press
response) with the critical points in the observed stimulus (see
Figure 44 ). Each participant viewed movements that had been
recorded during their own action performance as well as traces
recorded from one other person. The timing error between the
button press responses and the occurrence of the critical point in
the stimulus can be used as a measure of prediction accuracy, or

4A video sample of the stimulus is available at http://research.colling.net.nz/
stimuli/mannequin

FIGURE 4 | (A) The mannequin stimuli, (B) movement patterns, and (C)

results from Colling et al. (2014).
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the accuracy of behavioral alignment between the observer and
the observed action.

If observers use a forward model of their own kinematics to
generate predictions about the observed actions—that is, if action
prediction relies on a mechanism that is composed, in part, of a
forward model—then alignment should be more accurate when
observers view traces that they had themselves produced because
the forward model would more accurately replicate the dynamics
of these displays. Consistent with the predictions of the emulator
hypothesis, timing error was lower when observers viewed record-
ings of their own actions. Subsequent control experiments were
able to rule out the explanation that superior performance on the
self-generated stimuli was simply the result of the idiosyncrasies
of the timing of the participants’ action production but was
indeed dependent on the kinematic properties of the observed
action.

Importantly, not all cases where observers view recordings
of their own actions produce a prediction advantage for self-
generated actions. However, these failures are informative because
they are expected when viewed in light of the mechanism thought
to produce the self-prediction advantage. That is, given a descrip-
tion of the mechanism thought to underlie the effect it is possible
to give a causal story about why some systems will behave a certain
way and why others will not. By analogy to Huygens’s observa-
tions, given his explanation based on the transfer of vibrations
through the wall it is possible to explain why clocks on the same
wall become entrained and why clocks on different walls do not.
This is in contrast to the entrainment approach, which seeks to
uncover general laws governing the dynamics of a system, where
it is not possible to give a causal story of why these laws should
apply to some systems and not others.

The results that demonstrate this distinction are a series of
observations by Flach et al. (2003) where they found that the self-
prediction advantage was eliminated when the observed actions
were produced by performing waves and zigzags with regular
(that is, not alternating) peak heights. The finding that the kine-
matic properties of the traces (whether they were derived from
self-produced or other-produced action) only made a difference
when the traces were not uniform is to be expected, because the
task can be performed in a qualitatively different way depending
on whether the peaks are regular or irregular. For the uniform
traces the stimulus is isochronous with the time between each of
the critical points being roughly equal; therefore, the movement
time required to produce the first upstroke provides all the infor-
mation needed to predict the timing of all the subsequent critical
points. That is, when the peaks are regular, it is not necessary for
observers to engage in action prediction and instead they can per-
form the task solely on the basis of the timing information present
in the first upstroke.

A second claim of the emulator hypothesis is that action pre-
diction relies on a mechanism that is composed, in part, of a
system that transforms the observed actions through visual anal-
ysis into a set of motor commands, which are then fed through
the forward model. That is, the action prediction mechanism
contains something like an inverse model. Therefore, disrupt-
ing the visual analysis process, by using stimuli that do not
uniquely specify how the observed action was produced should

disrupt the prediction process. To test this prediction, Colling
et al. (2013b) employed two sets of stimuli. The first set of stim-
uli were once again mannequins performing irregular zigzag and
wave movements. And the second set of stimuli consisted of
only a single moving point that tracked the movement of the
mannequin’s hand. In the point stimuli, all the information that
the observer required to align their actions with the observed
action was present in the stimuli. However, the point stimuli con-
tained no information about the configuration of the observed
agent’s limbs. That is, the observed trajectory was ambiguous as
to the action that was actually used to produce the trajectory with
any number or combination of hand, wrist, elbow, or shoulder
movements capable of producing the trajectory—although the
movements in both conditions were identical and generated from
the same motion capture data.

The results of the experiment showed a clear advantage for
aligning responses with the mannequin stimuli relative to the
point stimuli. Importantly, this advantage was not simply due to
low-level stimulus features (such as added complexity in the man-
nequin stimuli), because a second set of participants who had
no experience with the observed stimuli did not show any dif-
ferences in alignment accuracy between the stimuli. Subsequent
analyses suggested that these naïve observers just produced button
presses at a regular interval presumably having formed a repre-
sentation of the temporal structure of the stimulus on the basis of
timing information available in the first upstroke—a process that
would not require engaging a motor emulator mechanism. From
the examples outlined it should be clear that mechanistic expla-
nations make it possible to give the kind of causal explanations
that general laws do not permit. In particular, on a mechanis-
tic account it is possible to say why particular systems exhibit
the behavior they do on the basis of the structure of the sys-
tem. And it is possible to say why particular effects occur in
some circumstances and not others on the basis of the func-
tioning of the system. For example, a mechanistic account, like
the emulator approach, provides an explanation of why self–
other differences emerged in the experiments of Colling et al.
(2014) and why self–other differences are unlikely to emerge
under other circumstances—for example, the Regular condition
(uniform peak heights) of Flach et al. (2003; Experiment 1). And
a mechanistic account is able to explain why Colling et al. (2013b)
found that experienced observers were able to align their behavior
better with a mannequin stimulus relative to a point stimulus.

NEUROENTRAINMENT OR USING MECHANISTIC
EXPLANATIONS TO EXPLAIN ENTRAINMENT PHENOMENA
The emulator approach and the entrainment approach to explain-
ing socially coordinated action have sometimes been viewed
as alternatives. It is true that the type of explanation in each
case is distinct. The entrainment approach explains by invok-
ing explananda such as attractors and system dynamics while the
emulator approach invokes explananda such as forward models
and inverse models, which can be cashed out in terms of how
they are realized in the brain. However, it would be a mistake
to judge them to be alternative explanations of socially coordi-
nated action, from which we must favor only one approach. From
the preceding section it should now be clear that the entrainment
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approach and the emulator approach do not only invoke differ-
ent explananda, they also provide different kinds of explanations.
The entrainment approach proposes general laws and the emu-
lator approach proposes mechanisms. We have argued in favor
of proposing mechanisms, because this makes it possible to pro-
vide a kind of causal story that the general laws approach does
not allow. By proposing general laws it is not possible to say why a
particular system exhibits particular behavioral regularities and
others do not. In contrast, a mechanistic explanation explains
why certain behavioral regularities exist with reference to the sys-
tem being composed of interacting parts organized in a particular
way. In the case of the emulator approach, an attempt is made to
explain behavioral phenomena by virtue of the neural parts and
operations that give rise to them. Developing models that only
describe behavioral regularities, as per the entrainment approach,
cannot be the only way forward because these models will fail to
explain what gives rise to these phenomena. We need to adopt the
explanatory tools of the emulator approach, a neuroentrainment
approach, that explains how the organized parts and operations of
a mechanism gives rise to the behavioral regularities of interest.

Some initial steps have been taken to provide mechanistic
explanations of why the effects observed in coordination exper-
iments occur by explaining these effects in terms of brain activity
(Jirsa et al., 1998; Jantzen et al., 2008; Tognoli and Kelso, 2014).
Inline with the explanatory style of the emulator framework,
what these approaches share is that they attempt to explain the
observed behavioral dynamics in terms of the interacting parts
of the system that produces the behavior—specifically, neural
ensembles, which exhibit dynamics similar to those observed at
a behavioral level (see Friston, 1997). For example, Jirsa et al.
(1998) have built a model that explains the phase shifts observed
at the behavioral level in terms of the dynamics of the under-
lying neural populations. Interestingly, work that has looked at
the link between large-scale brain activity and coordination has
implicated regions often associated with the emulator system,
namely premotor and parietal regions that form part of the mir-
ror system (Wilson and Knoblich, 2005; Colling et al., 2013a).
For example, Jantzen et al. (2008) has looked at the link between
large scale brain dynamics and unimanual coordination with an
auditory signal. This work suggests that unstable coordination
is associated with increased neural coupling between premo-
tor and supplementary motor regions, suggesting an increased
involvement of motor planning regions is needed to maintain
coordination. Interestingly, these brain regions have also been
implicated in action prediction, as well as prediction more gen-
erally (Schubotz, 2007), and may form part of the emulator
system (Wilson and Knoblich, 2005; Csibra, 2008). Increased
involvement of regions associated with motor emulation and
motor planning may explain why action prediction is sensi-
tive to observed kinematics when attempting to align behavioral
responses with unstable stimuli such as irregular up and down
arm movements (Colling et al., 2010, 2014) but not when aligning
behavioral responses with stable, isochronous stimuli like regular
wave and zigzag patterns (Flach et al., 2003; Experiment 1: reg-
ular pattern). This raises the possibility that the neural system
that supports the effects observed in entrainment experiments
might implement an emulator, and therefore these effects may

be the result of the dynamics of the emulator. Indeed, Tognoli
et al. (2007) has specifically tried to use the mechanisms pro-
posed by emulator theory to explain entrainment phenomena.
However, it should be noted that our argument does not turn
on whether entrainment phenomena can be explained by motor
emulation. Rather, a neuroentrainment approach should seek
to explain entrainment phenomena using the explanatory style
of the emulator approach—that is, mechanistically—and not
necessarily by using the same mechanisms. What these mech-
anisms turn out to be is a question left for future empirical
work.

In arguing in favor of the mechanistic explanation of the
emulator approach we do not mean to discount the importance
of uncovering behavioral regularities. Here, and elsewhere (e.g.,
Bechtel and McCauley, 1999; Bechtel, 2008; Colling and Roberts,
2010), it has been argued that making conjectures about the
mechanism that underlies a phenomena of interest—for example,
social motor coordination—should serve as a guide to predicting
possible behavioral effects that the mechanism gives rise to. For
instance, Bechtel and McCauley (1999) put forward the notion of
a heuristic identity theory in which they argue that claims about
the neural underpinnings of psychological phenomena should
serve as a guide for future empirical research. This bottom-up
route has been adopted by the emulator approach where findings
about forward models and the mirror system led to the predic-
tions that were tested using the real-time prediction paradigm.
However, a top-down route, where the behavioral effects serve as
a guide for uncovering mechanisms is an equally valid approach.
The usefulness of this approach is clearly exemplified by the work
of Jirsa et al. (1998). Indeed, the most fruitful approach might
be to combine bottom-up and top-down approaches so that pre-
cise descriptions of the dynamics of phenomena and conjectures
about the mechanisms that underlie these phenomena mutu-
ally constrain explanatory endeavors. Viewing the approaches as
complementary will only improve our understanding of these
phenomena.

Abandoning an exclusive focus of explanations based on gen-
eral laws and adopting explanations based on mechanisms may
also have deeper philosophical implications for the entrain-
ment approach. Many researchers working on entrainment are
staunchly anti-representationalist (Chemero, 2001; Schmidt et al.,
2011; Stepp et al., 2011). While mechanistic explanations need
not be representational explanations, they tend to be amenable to
“representation hunting” (Zednik, 2011). The emulator approach
is representational in that the forward model carries information
about the musculosketal system and its operation is determined
in virtue of carrying this information. Similarly, the search for
mechanisms that underlie entrainment behavior, as seen in the
work of Jirsa et al. (1998) and Jantzen et al. (2008), appears to
make claims about a mechanism in which parts carry informa-
tion and perform their function in virtue of the information
they carry. Thus, such explanations may turn out to be repre-
sentational. It is outside the scope of this paper to fully spell
out the implications that a future neuroentrainment approach
would have for the debates surrounding representational and
non-representational views of cognition but it is a live area for
further research.

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 754 | 9

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Colling and Williamson Entrainment and motor emulation

CONCLUSIONS
In this paper we have argued that the entrainment approach
and emulator approach do not provide alternative explanations
of socially coordinated action. Rather the two approaches offer
distinct styles of explanation that cannot be viewed as compet-
ing explanations because they have distinct explanatory aims. To
demonstrate this, we have shown by way of example how the
entrainment approach offers explanations in the form of general
laws that govern the behavioral dynamics of the systems under
study. And we have shown by way of example how the emulator
approach instead offers explanations in the form of mechanisms.
The mechanistic explanation offered by the emulator approach
makes claims about specific parts of the mechanism that can be
localized to the brain (e.g., the cerebellum and mirror neuron
system) and claims about the functions of these parts (e.g., that
they function as internal models). Furthermore, we have argued
that mechanistic explanations are superior because only they can
provide the kind of causal story that explains why certain sys-
tems or tasks will exhibit certain behavioral features while other
systems or tasks will not. As a result, we have argued that the
explanations offered by the entrainment approach are not suffi-
cient. To provide sufficient explanations of the explanatory targets
discussed in the entrainment literature a mechanistic approach is
needed. We have termed this new approach the neuroentrainment
approach because any mechanistic explanation must ultimately
seek to explain the observed behavioral dynamics in terms of parts
and operations that can be localized in the brain.
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