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Abstract 27 

The aim of this study was to determine whether declines in knee flexor strength following overground 28 

repeat sprints were related to changes in hamstrings myoelectrical activity. Seventeen recreationally 29 

active males completed maximal isokinetic concentric and eccentric knee flexor strength assessments 30 

at 1800.s-1 before and after repeat sprint running. Myoelectrical activity of the biceps femoris (BF) and 31 

medial hamstrings (MH) was measured during all isokinetic contractions. Repeated measures mixed 32 

model (Fixed factors = time [pre- and post- repeat sprint] and leg [dominant and non-dominant], 33 

random factor = participants) design was fitted with the restricted maximal likelihood method. Repeat 34 

sprint running resulted in significant declines in eccentric, and concentric, knee flexor strength 35 

(eccentric = 25 ± 34 Nm, 15% p<0.001; concentric 11 Nm± 22 Nm, 10% p = 0.001). Eccentric BF 36 

myoelectrical activity was significantly reduced (10%; p= 0.033). Concentric BF and all MH 37 

myoelectrical activity were not altered. The declines in maximal eccentric torque were associated with 38 

the change in eccentric biceps femoris myoelectrical activity (p = 0.013). Following repeat sprint 39 

running there were preferential declines in the myoelectrical activity of the BF, which explained 40 

declines in eccentric knee flexor strength.  41 

 42 
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Introduction 47 

Hamstring strain injuries (HSIs) are the predominant injury type in many sports (Brooks, Fuller, 48 

Kemp, & Reddin, 2006; Ekstrand, Hagglund, & Walden, 2011; Orchard, Seward, & Orchard, 2013), 49 

with a number of risk factors identified (Opar, Williams, & Shield, 2012). Despite increased attention 50 

being placed on developing better prevention programs (Arnason, Andersen, Holme, Engebretsen, & 51 

Bahr, 2008; Askling, Tengvar, & Thorstensson, 2013), HSIs still occur and reoccur frequently 52 

(Brooks et al., 2006; Orchard et al., 2013). The combination of high incidence and recurrence rates 53 

(Opar et al., 2012), significant cost in terms of financial and lost time from training and competition 54 

(Hickey, Shield, Williams, & Opar, 2013; Orchard et al., 2013; Woods et al., 2004), as well as 55 

compromised performance levels upon return from injury (Verrall, Kalairajah, Slavotinek, & 56 

Spriggins, 2006), all make the management of HSI particularly challenging for both clinicians and 57 

athletes. 58 

HSIs occur most commonly during high speed running (Askling, Tengvar, Saartok, & Thorstensson, 59 

2007; Brooks et al., 2006) and often involve the long head of the biceps femoris (BF) (Koulouris, 60 

Connell, Brukner, & Schneider-Kolsky, 2007). It has been proposed that the terminal swing phase, 61 

where the hip is flexed and the knee is extending rapidly, is when the hamstrings are most vulnerable 62 

to injury (Schache, Dorn, Blanch, Brown, & Pandy, 2011; Thelen et al., 2005). The high levels of 63 

force required from the hamstrings to decelerate these movements via eccentric contractions, coupled 64 

with the increasing muscle strain, are proposed mechanisms for HSI (Opar et al., 2012; Schache et al., 65 

2011; Thelen et al., 2005). Furthermore, fatigue has also been implicated in HSI aetiology, with 66 

prolonged match time resulting in an increase in HSI incidence (Brooks et al., 2006; Ekstrand et al., 67 

2011). Previous research has reported that a soccer-specific running protocol results in preferential 68 

declines in eccentric knee flexor strength with minimal changes in concentric strength (Greig, 2008; 69 

Small, McNaughton, Greig, & Lovell, 2010). This suggests that prolonged intermittent running may 70 

increase the likelihood of HSI due to a reduction in eccentric hamstring strength, which is a noted risk 71 

factor for injury (Croisier, Ganteaume, Binet, Genty, & Ferret, 2008; Sugiura, Saito, Sakuraba, 72 

Sakuma, & Suzuki, 2008). However, the mechanism responsible for this contraction-mode-specific 73 
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decline in strength following prolonged intermittent running remains unknown. One possible 74 

explanation is a decline in activation of the hamstring muscles. Determination of whether reductions 75 

in the myoelectrical activity of the medial hamstrings (MH) and BF muscles explain the decline in 76 

eccentric knee flexor torque after running would inform whether reduced activation is somewhat 77 

responsible for this loss of strength. It is also unknown whether the changes in strength observed after 78 

prolonged bouts of intermittent running (Greig, 2008; Small et al., 2010) also occur after relatively 79 

short duration, high-intensity efforts. Given the importance of repeat sprint running in elite sport and 80 

reports of high-speed running being particularly injurious (Schache et al., 2011; Thelen et al., 2005), 81 

hamstring function following repeat sprint running requires examination.  82 

No previous study has investigated the effects of a repeat sprint running protocol on knee flexor 83 

strength and hamstring myoelectrical activity. Hence, the aim of this study was to determine if 84 

reductions in knee flexor strength occur following repeat sprint running. Furthermore, we aimed to 85 

determine if these reductions in strength were associated with changes in hamstring myoelectrical 86 

activity. A thorough understanding of how hamstring activation patterns are altered as a consequence 87 

of high speed running is important; as such information could be used to develop better interventions 88 

for protecting the hamstrings against injury. 89 

 90 

91 
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Methods 92 

Seventeen recreationally active males (mean age of 23.3 ± 2.6 years; height 1.81 ± 0.06m; body mass 93 

80.2 ±7.5kg) were recruited. None of the participants had a history of any lower limb injury in the 94 

past 36 months. Each participant provided written informed consent prior to undertaking their first 95 

session and approval for the study was obtained by the University Human Research Ethics 96 

Committee.  97 

The exercise testing session consisted of three sets of six 20-metre maximal overground (grass 98 

surface) sprints with a 10-metre acceleration distance and 15-metres for deceleration. Rest periods of 99 

90 and 240 seconds were employed between repetitions and sets, respectively. The protocol was 100 

based on elite European soccer data that shows the mean total sprint distance, in a competitive game, 101 

to be between 237 and 345 metres (Andrzejewski, Chmura, Pluta, Strzelczyk, & Kasprzak, 2012). 102 

Sprint performance was measured using dual-beamed, laser timing gates (Model WL250-P132, Sick 103 

Optex, Japan). Prior to and after completing the sprinting protocol, participants undertook a maximal 104 

isokinetic dynamometry strength test of the knee flexors. Post run testing occurred within 15 minutes 105 

after the sprinting session.  106 

Participants completed two sessions of testing on a Biodex® System 3 isokinetic dynamometer 107 

(Shirley, NY). All tests were conducted on both legs (dominant or non-dominant) and testing order 108 

was randomised. Limb dominance was defined as the leg most often used for kicking a ball. A 109 

familiarisation session was completed on average 7 ± 1days prior to the testing session. Participants 110 

were seated on the dynamometer with a hip angle that was approximately 85° from full extension and 111 

were restrained by straps around the tested thigh, waist and chest to prevent compensatory 112 

movements. All seating variables (e.g. seat height, pad position, etc) were recorded to ensure the 113 

replication of the participants’ positions. Gravity correction for limb weight was also conducted and 114 

range of motion was set between 5° and 90° of knee flexion (full extension = 0°) with the starting 115 

position for each contraction being 90° of knee flexion. Concentric contractions of the knee flexors 116 

were conducted from 5° to 90°, with eccentric efforts being from 90° to 5°. Prior to performing 117 
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maximal efforts, participants undertook a warm-up consisting of three sets of four concentric knee 118 

extension and flexion contractions at an angular velocity of 240°⋅s-1. The intensity of these 119 

contractions increased each set until the final set at this velocity was performed at a maximal level. 120 

The test protocol began one minute following the final warm-up set and consisted of three sets of 121 

three concentric and eccentric MVCs of knee flexion at 180°⋅s-1 with 30s rest between sets. The 122 

testing speed was chosen based on previous research which has investigated the effect of fatigue on 123 

knee flexor strength (Greig, 2008). All participants were verbally encouraged by the investigators to 124 

ensure maximal effort for all contractions. The testing order of contraction modes was randomised 125 

across the participant pool. To determine the impact of the isokinetic testing protocol on knee flexor 126 

strength a small pilot study (n = 5) was conducted. The participants completed three sets of three 127 

concentric and eccentric knee flexor MVCs at 180°⋅s-1and rested passively for 2 hours. Following the 128 

rest period, the same testing protocol was repeated. Concentric and eccentric strength was not altered 129 

following the testing protocol (concentric 180°⋅s-1: 7.7Nm; 95%CI = -29.1 to 13.7; p = 0.188; d = 130 

0.51,eccentric 180°⋅s-1: 5.6Nm; 95%CI = -31.4 to 20.1Nm; p = 0.289;d = 0.17). 131 

Bipolar pre-gelled Ag/AgCl surface electromyography (sEMG) electrodes (10mm diameter, 25mm 132 

inter-electrode distance) were used to record myoelectrical activity from the MH and BF. After 133 

preparation of the skin, electrodes were placed on the posterior thigh half way between the ischial 134 

tuberosity and tibial epicondyles with electrodes oriented parallel to the line between these two land 135 

marks, as per SENIAM guidelines (Hermens, Freriks, Disselhorst-Klug, & Rau, 2000). The reference 136 

electrode was placed on the ipsilateral fibula head. Muscle bellies were identified via palpation during 137 

forceful isometric knee flexion and correct placement was confirmed by observing sEMG activity 138 

during active internal and external rotation of the flexed knee to assess cross talk between MH and 139 

BF. Once confirmed, an outline was then traced around the electrodes to ensure correct positioning 140 

following the sprinting protocol. As the participants completed the isokinetic testing in a seated 141 

position, custom made foam padding was used to minimise any movement artefact that may be caused 142 

from contact with the dynamometer chair.  143 
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Dynamometer torque and lever position data were transferred to computer at 1kHz and stored for later 144 

analysis. Average peak torques for concentric and eccentric knee flexion were defined as the means of 145 

the six highest torque values for each contraction mode. sEMG was sampled simultaneously with the 146 

dynamometer data at 1kHz through a 16-bit PowerLab26T AD recording unit (ADInstruments, New 147 

South Wales, Australia) (amplification = 1000; common mode rejection ratio = 110dB) and was 148 

filtered utilising a Bessell filter with a frequency bandwidth of 10 to 500Hz and then rectified using 149 

the root-mean-square method. At each contraction mode EMG data were averaged across a knee joint 150 

ROM between 15o-35o (full knee extension = 0°). The angle of peak torque was between 18.2° to 151 

33.6° concentrically and 15.2° to 32.3° during eccentric contractions. sEMG data at all velocities were 152 

then normalised as a quotient of the average EMG signal during concentric knee flexion at 180°⋅s-1 153 

obtained in the pre-test(Aagaard et al., 2000).  154 

All data were entered into JMP version 10.01 Pro Statistical Discovery Software (SAS Inc) and 155 

analysed using a mixed model repeated measures design fitted with the restricted maximum likelihood 156 

(REML) method. The analysis was a two tiered approach. The first tier was based on the hypothesis 157 

that changes in knee flexor strength and myoelectrical activity following repeat sprint running would 158 

be specific to contraction mode. Repeated measures mixed model (Fixed factors = time [pre- and 159 

post- repeat sprint] andleg [dominant and nondominant], random factor = participants) design was 160 

used. 161 

Once it was established that changes in knee flexor strength and myoelectrical activity occurred, the 162 

second tier of linear analysis was employed. This was based on the premise that knee flexor torque is 163 

explained partly by combined MH and BF activity and therefore the changes in knee flexor torque at a 164 

given velocity could be related to the changes in myoelectrical activity of the hamstrings. The 165 

response variable modelled was the change in knee flexor torque (pre- minus post-running test) and 166 

the fixed factors were change in MH myoelectrical activity, change in BF myoelectrical activity and 167 

leg (dominant and non-dominant), with participants as random factors. This analysis was performed 168 

separately for the concentric and eccentric contraction modes. Any differences were considered 169 

significant with a p value <0.05. Furthermore, Cohen d effect sizes were calculated between tests (pre 170 
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and post running) with the levels of effect size being deemed small (d = 0.20), medium (d = 0.50) or 171 

large (d = 0.80) as recommended by Cohen (Cohen, 1988). 172 

Results 173 

Peak eccentric knee flexor torque declined by 15% (25.7 Nm; 95%CI = 18.0 to 33.2 Nm, p< 0.001; d 174 

= 0.63) while peak concentric torque declined by 10% (11.1 Nm; 95%CI = 6.3 to 16.0 Nm; p = 0.001; 175 

d = 0.48) after the sprint protocol (Fig.1). No significant difference between legs (eccentric p = 0.073; 176 

concentric p = 0.105) or leg by time interactions (eccentric p = 0.610; concentric p = 0.999) were 177 

observed.Normalised BF myoelectrical activity during the eccentric knee flexor contractions was 178 

significantly reduced by 10% (0.068; 95% CI = 0.005 to 0.131; p= 0.035; d = 0.33; Fig. 2) after the 179 

repeat sprints. In addition, normalised BF myoelectrical activity of the dominant leg in eccentric 180 

actions was greater than that of the non-dominant leg (11%; 0.076; 95% CI= 0.013 to 0.139; p = 181 

0.020; d = 0.37) , however no time by leg interaction was observed (p = 0.724). Furthermore, BF 182 

myoelectrical activity during the concentric contractions displayed no significant change after sprint 183 

running (3%; 0.024; 95% CI=-0.094 to 0.045;  p= 0.483; d = 0.12; Fig. 2) and no significant effects 184 

for leg (p = 0.903) or time by leg interaction (p = 0.903). Furthermore, normalised MH myoelectrical 185 

activity did not change after sprinting for either contraction mode (eccentric: 6%; 0.037; 95% CI= -186 

0.04 to 0.113; p= 0.0.342; d = 0.16; Fig. 2, concentric: 6%; 0.062; 95% CI= -0.025 to 0.148; p= 187 

0.089; d = 0.23; Fig. 2). Additionally, no significant main effects for normalised MH myoelectrical 188 

activity were found in leg (concentric p = 0.694; eccentric p = 0.417) or the time by leg interactions 189 

(concentric p = 0.694; eccentric p = 0.722). 190 

Changes in hamstring myolectrical activity were able to explain changes in eccentric knee flexor 191 

torque following repeat sprint running (whole model R2 = 0.69, p < 0.001) (see Figure 3 for an 192 

exemplar which illustrates the relationship during the eccentric contraction for both the changes in 193 

strength and BF myoelectrical activity). More specifically, it was change in the BF myoelectrical 194 

activity that was related to the decrease in knee flexor torque (p = 0.013) while no effects for the 195 

changes in MH myoelectrical activity (p = 0.372), or leg (p = 0.486) were found. For the concentric 196 
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contractions no significant effects were observed (MH myoelectrical activity p = 0.984; BF 197 

myoelectrical activity p = 0.355; leg p = 0.973). 198 

Discussion 199 

The main objective of the present study was to examine the impact of a repeat sprint running protocol 200 

on isokinetic knee flexor strength and hamstrings myoelectrical activity. The main finding was a 201 

reduction in eccentric knee flexor strength that was related to a reduction in BF myoelectrical activity. 202 

By contrast, changes in MH myoelectrical activity were statistically insignificant and therefore not 203 

related to the changes in strength. 204 

Previous work investigating declines in knee flexor strength following running has primarily used 205 

intermittent running protocols designed to mimic the physiological demands of soccer (Greig, 2008; 206 

Rahnama, Reilly, Lees, & Graham-Smith, 2003; Small et al., 2010). These protocols have resulted in 207 

declines of between 17-18% in eccentric strength and 5-15% in concentric strength. These results are 208 

similar to those from the current study, where 15% and 10% declines were observed in eccentric and 209 

concentric torque respectively. No previous studies have determined whether or not such strength 210 

declines are related to changes in hamstrings myoelectrical activity.  211 

HSIs commonly occur during high-speed running (Askling et al., 2007; Woods et al., 2004) and more 212 

often involve the BF than the medial hamstrings (Koulouris et al., 2007; Opar et al., 2012). There is 213 

also a tendency for most of these injuries to occur towards the end of each half in soccer (Woods et 214 

al., 2004) and rugby union matches (Brooks et al., 2006) and this suggests a role for fatigue in HSI 215 

aetiology. It is possible that the decline in eccentric knee flexor strength following repeat sprint 216 

running might increase injury susceptibility (Croisier et al., 2008; Sugiura et al., 2008) and while 217 

muscular metabolic changes undoubtedly explain a significant portion of muscle weakness after this 218 

sort of exercise (Bishop & Edge, 2006; Bishop, Lawrence, & Spencer, 2003; Davies, Eston, Fulford, 219 

Rowlands, & Jones, 2011), our observations suggest that reduced BF activation explains at least part 220 

of this strength loss. This finding may at least partially explain why BF is the primary hamstring head 221 

involved in HSI (Koulouris et al., 2007; Opar et al., 2012). In-situ animal experiments have found that 222 
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sub-maximal activation of a lengthening muscle reduces the amount of energy it can absorb before 223 

stretch induced failure occurs (Mair, Seaber, Glisson, & Garrett, 1996). Similar in-situ observations 224 

have also been reported in pre-fatigued muscle under lengthening conditions (Garrett, Safran, Seaber, 225 

Glisson, & Ribbeck, 1987). Additionally, of all the hamstring muscles, the BF undergoes the greatest 226 

amount of musculotendinous strain during high speed running (Schache et al., 2011; Thelen et al., 227 

2005). As the level of muscle damage that occurs following eccentric contractions is a function of the 228 

strain within the musculotendinous unit (Lieber & Friden, 1993), it is thought that the extent of 229 

damage after repeat sprint running would also be augmented. Furthermore, as the terminal swing 230 

phase of running requires a high force eccentric contraction (Schache et al., 2011; Thelen et al., 2005), 231 

a reduced capacity to absorb energy might be expected to increase the chance of strain injury to BF. 232 

We can only speculate as to why the myoelectrical activity of the BF muscle declined while the MH 233 

remained unaffected. There are a number of reports of structural and functional differences between 234 

the hamstring muscle heads (Woodley & Mercer, 2005) and these may play a role in determining 235 

muscle-specific responses to sprint running. For example, the BF experiences larger peak strains 236 

during the terminal swing phase of running than the MH (Thelen et al., 2005) and these may 237 

predispose the former to greater muscle damage (Garrett et al., 1987). Additionally, exercise induced 238 

muscle damage has been shown to result in significant reductions of voluntary activation (Endoh, 239 

Nakajima, Sakamoto, & Komiyama, 2005; Skurvydas, Brazaitis, Kamandulis, & Sipaviciene, 2010) 240 

and EMG (Beck, Kasishke, Stock, & DeFreitas, 2012). Furthermore such damage may increase 241 

afferent feedback which may act to reduce the myoelectrical activity of the BF in an attempt to 242 

minimise exposure to the damaging stimulus (Marqueste et al., 2004). Such a response might be 243 

perceived to have short term benefits (e.g. limit the amount of strain during eccentric contractions) but 244 

would most likely be counterproductive from the perspective of strain injury avoidance given the 245 

potential impact of reduced myoelectrical activity on the energy absorption capabilities of muscle 246 

(Mair et al., 1996). Also, the shorter fascicles of the BF (Woodley & Mercer, 2005) may potentially 247 

explain why this muscle is particularly prone to injury during high speed running. Eccentrically 248 

induced hamstring muscle damage has also been shown to alter position sense of the knee joint 249 
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(Paschalis et al., 2008), although the impact of damage on other aspects of neural control remains 250 

largely unexamined.  251 

  Some limitations exist within the present study. First and foremost, not all of the muscles which 252 

contribute to the production of knee flexor torque had their myoelectrical activity assessed before and 253 

after repeat sprint running, which means that the impact of this exercise on the activity of sartorious, 254 

gastrocnemius and gracilis could not be determined. Nevertheless, the hamstrings constitute the 255 

majority of the muscular cross sectional area crossing the posterior aspect of the knee joint (Woodley 256 

& Mercer, 2005) and would be expected to have the greatest influence on knee flexor strength (Lieber 257 

& Ward, 2011). Secondly, the isokinetic movement velocity utilised in the present study is much 258 

lower than the knee joint angular velocities noted during the terminal swing phase of sprint running. 259 

Current dynamometers do not allow assessments of torque at speeds above 300-500°⋅s-1. We chose to 260 

limit our movement velocity to 180°⋅s-1 to allow comparisons with previous literature (Greig, 2008) 261 

and because we have found torque generation at faster speeds to be less reliable. It should also be 262 

acknowledged that knee extension velocities slow from maximum angular velocities of approximately 263 

1000-1200°⋅s-1 (Schache et al., 2011; Thelen et al., 2005) to zero during the swing phase of sprinting 264 

and there is no reason to believe that testing at lower velocities is less indicative of eccentric muscle 265 

function than higher speeds in this range. 266 

 267 

Whilst there is some error previously reported with isokinetic testing, we have found a high level of 268 

reproducibility. Our laboratory has previously examined the test-retest reliability using the exact 269 

protocol and Biodex® System 3 isokinetic dynamometer of the current study. We obtained intraclass 270 

correlations (ICCs) and typical error as a coefficient of variation (%TE) for peak knee flexor torque 271 

under both concentric 180°⋅s-1 (ICC= 0.93; TE% = 4.5%) and eccentric 180°⋅s-1 (ICC = 0.82; TE%= 272 

6.0%) conditions. These data are similar to values of test-retest reliability of maximal knee flexor 273 

torque (ICC = 0.97 and 0.96) previously reported within the literature (Feiring, Ellenbecker, & 274 

Derscheid, 1990; Tsiros, Grimshaw, Shield, & Buckley, 2011) utilising the Biodex® isokinetic 275 

dynamometer.  276 
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 277 

We must acknowledge that the decline in eccentric strength observed here may also be due to other 278 

factors not measured within this study. Previous investigations have shown an altered muscle 279 

coordination pattern, as well as an augmented agonist-antagonist co-activation sequence to be partly 280 

responsible for these reductions in strength when fatigued (Psek & Cafarelli, 1993; Rodacki, Fowler, 281 

& Bennett, 2001). Additionally, the assessment of hamstring myoelectrical activity is not completely 282 

representative of the voluntary activation capacity within the muscle. The twitch interpolation 283 

technique is considered the most accurate way of determining muscle activation during voluntary 284 

contractions (Shield & Zhou, 2004), however, the use of this technique within the hamstrings is yet to 285 

be reported in the literature. Finally, it should be acknowledged that electromyography is not without 286 

limitations as it is influenced not only by factors related to the extent of muscle activation (motor unit 287 

recruitment and firing rates) but also by the degree of motor unit synchrony (Yao, Fuglevand, & 288 

Enoka, 2000) Nevertheless, observations of lower levels of activation in eccentric than concentric 289 

maximal contractions are supported by studies employing superimposed electrical 290 

stimulation(Amiridis et al., 1996; Beltman, Sargeant, van Mechelen, & de Haan, 2004; Westing, 291 

Cresswell, & Thorstensson, 1991), so it seems likely that the current measures of myoelectrical 292 

activity are reflective of muscle activation.  293 

Conclusion 294 

In conclusion, this study found that following repeat sprint running there was a decline in eccentric 295 

knee flexor strength that was related to a significant decline in the myoelectrical activity of the BF. 296 

Declines in BF myoelectrical activity following repeat sprint running and its role in the aetiology of 297 

HSIs still require further attention. 298 

Perspectives 299 

This study demonstrated a significantly lowered eccentric knee flexor strength following repeat sprint 300 

running. This is of interest as eccentric weakness and prolonged game time are risk factors within the 301 

aetiology of HSIs (Croisier et al., 2008; Sugiura et al., 2008; Woods et al., 2004). Furthermore, the 302 
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eccentric myoelectrical activity of the BF was also significantly reduced and this decrease in 303 

myoelectrical activity was responsible for the reduction in eccentric knee flexor strength. As the BF is 304 

the most frequently injured of the hamstring muscles (Koulouris et al., 2007)alterations in its 305 

neuromuscular function following running are cause for further work to better understand the 306 

relationship between fatigue and HSI risk. 307 

308 
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Figure 1: Knee flexor peak torque at twodifferent isokinetic contraction modes before (Pre) and 315 

after (Post) a sprinting session. Error bars illustrate the standard deviation. * p <0.05 pre vs 316 

post.  317 

318 
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Figure 2: Knee flexor normalised EMG in concentric and eccentric actions before (Pre) and 319 

after (Post) a sprinting session for both the A) medial hamstrings and B) biceps femoris. Error 320 

bars illustrate the standard deviation. * p <0.05 pre vs post.  321 

 322 

323 
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Figure 3: Exemplar from a single participant. Comparison of knee flexor torque and 324 

normalised biceps femoris EMG activity before (Pre) and after (Post) sprinting session at A)  325 

concentric B) eccentric. Note for the whole group data, that only at  eccentric 1800.s-1 could 326 

the decline in torque be explained by the decline in biceps femoris EMG activity.  327 

  328 



18 
 

References 329 

Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J,  Dyhre-330 
Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps 331 
contraction: effects of resistance training. J Appl Physiol: 2000. 89(6): 2249-2257. 332 

Amiridis IG, Martin A, Morlon B, Martin L, Cometti G, Pousson M,  van Hoecke J. Co-333 
activation and tension-regulating phenomena during isokinetic knee extension in 334 
sedentary and highly skilled humans. Eur J Appl Physiol Occup Physiol: 1996. 73(1-335 
2): 149-156. 336 

Andrzejewski M, Chmura J, Pluta B, Strzelczyk R,  Kasprzak A. Analysis of Sprinting 337 
Activities of Professional Soccer Players. J Strength Cond Res: 2012. 338 

Arnason A, Andersen TE, Holme I, Engebretsen L,  Bahr R. Prevention of hamstring strains 339 
in elite soccer: an intervention study. Scand J Med Sci Sports: 2008. 18(1): 40-48. 340 

Askling C, Tengvar M, Saartok T,  Thorstensson A. Acute first-time hamstring strains during 341 
high-speed running: a longitudinal study including clinical and magnetic resonance 342 
imaging findings. Am J Sports Med: 2007. 35(2): 197-206. 343 

Askling C, Tengvar M,  Thorstensson A. Acute hamstring injuries in Swedish elite football: a 344 
prospective randomised controlled clinical trial comparing two rehabilitation 345 
protocols. Br J Sports Med: 2013. 346 

Beck TW, Kasishke PR, 2nd, Stock MS,  DeFreitas JM. Neural contributions to concentric 347 
vs. eccentric exercise-induced strength loss. J Strength Cond Res: 2012. 26(3): 633-348 
640. 349 

Beltman JG, Sargeant AJ, van Mechelen W,  de Haan A. Voluntary activation level and 350 
muscle fiber recruitment of human quadriceps during lengthening contractions. J Appl 351 
Physiol: 2004. 97(2): 619-626. 352 

Bishop D,  Edge J. Determinants of repeated-sprint ability in females matched for single-353 
sprint performance. Eur J Appl Physiol: 2006. 97(4): 373-379. 354 

Bishop D, Lawrence S,  Spencer M. Predictors of repeated-sprint ability in elite female 355 
hockey players. J Sci Med Sport: 2003. 6(2): 199-209. 356 

Brooks JHM, Fuller CW, Kemp SPT,  Reddin DB. Incidence, risk, and prevention of 357 
hamstring muscle Injuries in professional rugby union. Am J Sports Med: 2006. 358 
34(8): 1297-1306. 359 

Cohen J. (1988). Statistical power analyssis for the behavioral sciences (2nd ed.). Hillsdale 360 
(NJ): Erlbaum. 361 

Croisier JL, Ganteaume S, Binet J, Genty M,  Ferret JM. Strength imbalances and prevention 362 
of hamstring injury in professional soccer players: a prospective study. Am J Sports 363 
Med: 2008. 36(8): 1469-1475. 364 

Davies RC, Eston RG, Fulford J, Rowlands AV,  Jones AM. Muscle damage alters the 365 
metabolic response to dynamic exercise in humans: a 31P-MRS study. J Appl 366 
Physiol: 2011. 111(3): 782-790. 367 

Ekstrand J, Hagglund M,  Walden M. Injury incidence and injury patterns in professional 368 
football: the UEFA injury study. Br J Sports Med: 2011. 45(7): 553-558. 369 

Endoh T, Nakajima T, Sakamoto M,  Komiyama T. Effects of muscle damage induced by 370 
eccentric exercise on muscle fatigue. Med Sci Sports Exerc: 2005. 37(7): 1151-1156. 371 

Feiring DC, Ellenbecker TS,  Derscheid GL. Test-retest reliability of the biodex isokinetic 372 
dynamometer. J Orthop Sports Phys Ther: 1990. 11(7): 298-300. 373 

Garrett W, Safran M, Seaber AV, Glisson RR,  Ribbeck B. Biomechanical comparison of 374 
stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med: 375 
1987. 15(6): 448-454. 376 



19 
 

Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the 377 
knee flexors and extensors. Am J Sports Med: 2008. 36(7): 1403-1409. 378 

Hermens HJ, Freriks B, Disselhorst-Klug C,  Rau G. Development of recommendations for 379 
sEMG sensors and sensor placement procedures. J Electromyogr Kinesiol: 2000. 380 
10361-374. 381 

Hickey J, Shield AJ, Williams MD,  Opar DA. The financial cost of hamstring strain injuries 382 
in the Australian Football League. Br J Sports Med: 2013. 383 

Koulouris G, Connell DA, Brukner P,  Schneider-Kolsky M. Magnetic resonance imaging 384 
parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J 385 
Sports Med: 2007. 35(9): 1500-1506. 386 

Lieber RL,  Friden J. Muscle damage is not a function of muscle force but active muscle 387 
strain. J Appl Physiol (1985): 1993. 74(2): 520-526. 388 

Lieber RL,  Ward SR. Skeletal muscle design to meet functional demands. Phil. Trans. R. 389 
Soc. B: 2011. 366(1570): 1466-1476. 390 

Mair SD, Seaber AV, Glisson RR,  Garrett WE, Jr. The role of fatigue in susceptibility to 391 
acute muscle strain injury. Am J Sports Med: 1996. 24(2): 137-143. 392 

Marqueste T, Decherchi P, Messan F, Kipson N, Grelot L,  Jammes Y. Eccentric exercise 393 
alters muscle sensory motor control through the release of inflammatory mediators. 394 
Brain Res.: 2004. 1023(2): 222-230. 395 

Opar DA, Williams MD,  Shield AJ. Hamstring strain injuries: factors that lead to injury and 396 
re-injury. Sports Med: 2012. 42(3): 209-226. 397 

Orchard JW, Seward H,  Orchard JJ. Results of 2 decades of injury surveillance and public 398 
release of data in the Australian Football League. Am J Sports Med: 2013. 41(4): 734-399 
741. 400 

Paschalis V, Nikolaidis MG, Giakas G, Jamurtas AZ, Owolabi EO,  Koutedakis Y. Position 401 
sense and reaction angle after eccentric exercise: the repeated bout effect. Eur J Appl 402 
Physiol: 2008. 103(1): 9-18. 403 

Psek JA,  Cafarelli E. Behavior of coactive muscles during fatigue. J Appl Physiol: 1993. 404 
74(1): 170-175. 405 

Rahnama N, Reilly T, Lees A,  Graham-Smith P. Muscle fatigue induced by exercise 406 
simulating the work rate of competitive soccer. J Sports Sci: 2003. 21(11): 933-942. 407 

Rodacki AL, Fowler NE,  Bennett SJ. Multi-segment coordination: fatigue effects. Med Sci 408 
Sports Exerc: 2001. 33(7): 1157-1167. 409 

Schache A, Dorn T, Blanch P, Brown N,  Pandy M. Mechanics of the human hamstring 410 
muscles during sprinting. Med Sci Sports Exerc: 2011. 44(4): 647-658. 411 

Shield A,  Zhou S. Assessing voluntary muscle activation with the twitch interpolation 412 
technique. Sports Med: 2004. 34(4): 253-267. 413 

Skurvydas A, Brazaitis M, Kamandulis S,  Sipaviciene S. Peripheral and central fatigue after 414 
muscle-damaging exercise is muscle length dependent and inversely related. J 415 
Electromyogr Kinesiol: 2010. 20(4): 655-660. 416 

Small K, McNaughton L, Greig M,  Lovell R. The effects of multidirectional soccer-specific 417 
fatigue on markers of hamstring injury risk. J Sci Med Sport: 2010. 13(1): 120-125. 418 

Sugiura Y, Saito T, Sakuraba K, Sakuma K,  Suzuki E. Strength deficits identified with 419 
concentric action of the hip extensors and eccentric action of the hamstrings 420 
predispose to hamstring injury in elite sprinters. J Orthop Sports Phys Ther: 2008. 421 
38(8): 457-464. 422 

Thelen DG, Chumanov ES, Hoerth DM, Best TM, Swanson SC, Li L, . . . Heiderscheit BC. 423 
Hamstring muscle kinematics during treadmill sprinting. Med Sci Sports Exerc: 2005. 424 
37(1): 108-114. 425 



20 
 

Tsiros MD, Grimshaw PN, Shield AJ,  Buckley JD. Test-retest reliability of the Biodex 426 
System 4 Isokinetic Dynamometer for knee strength assessment in paediatric 427 
populations. J Allied Health: 2011. 40(3): 115-119. 428 

Verrall G, Kalairajah Y, Slavotinek J,  Spriggins A. Assessment of player performance 429 
following return to sport after hamstring muscle strain injury. J Sci Med Sport: 2006. 430 
9(1-2): 87-90. 431 

Westing SH, Cresswell AG,  Thorstensson A. Muscle activation during maximal voluntary 432 
eccentric and concentric knee extension. Eur J Appl Physiol Occup Physiol: 1991. 433 
62(2): 104-108. 434 

Woodley SJ,  Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues 435 
Organs: 2005. 179(3): 125-141. 436 

Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A,  Football Association 437 
Medical Research P. The Football Association Medical Research Programme: an 438 
audit of injuries in professional football--analysis of hamstring injuries. Br J Sports 439 
Med: 2004. 38(1): 36-41. 440 

Yao W, Fuglevand RJ,  Enoka RM. Motor-unit synchronization increases EMG amplitude  441 
and decreases force steadiness of simulated contractions. J Neurophysiol: 2000. 83(1):  442 
441-452. 443 

 444 


