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Abstract 

Entropy is an effective tool for investigation of human movement variability. However, before 

applying entropy, it can be beneficial to employ analyses to confirm that observed data is not 

solely the result of stochastic processes. This can be achieved by contrasting observed data 

with that produced using surrogate methods. Unlike continuous movement, no appropriate 

method has been applied to discrete human movement. This article proposes a novel 

surrogate method for discrete movement data, outlining the processes for determining its 

critical values. The proposed technique reliably generated surrogates for discrete joint angle 

time series, destroying fine-scale dynamics of the observed signal, while maintaining macro 

structural characteristics. Comparison of entropy estimates indicated observed signals had 

greater regularity than surrogates and were not only the result of stochastic but also 

deterministic processes. The proposed surrogate method is both a valid and reliable 

technique to investigate determinism in other discrete human movement time series. 

Introduction 

Human movement variability has received increasing attention over the last 30 years and 

has historically been attributed to noisiness within the neuromuscular system (Newell, 

Deutsch, Sosnoff, & Mayer-Kress, 2006). Contemporary investigations hypothesise that 

variability is not representative of purely stochastic processes but rather manifestation of 

intrinsic, deterministic, dynamical systems (Newell & Corcos, 1993), which can facilitate 

motor learning, improve performance and prevent injury (Bartlett, 2007; Davids, Glazier, 

Araujo, & Bartlett, 2003; Preatoni et al., 2013). Sample entropy is an effective tool for 

investigating movement variability (Preatoni, Ferrario, Dona, Hamill, & Rodano, 2010). 

Sample entropy can quantify the regularity of a signal allowing inference to the complexity of 

the organism or system producing the signal (Lake, Richman, Griffin, & Moorman, 2002; 

Preatoni et al., 2010; Richman & Moorman, 2000). However, as entropy quantifies the 

regularity of signals that are stochastic, deterministic or a combination of both, a method 
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which can demonstrate that a biological signal is not solely stochastic in nature is beneficial. 

If a signal can be shown to contain deterministic dynamics then it may provide evidence 

against the null, variability as noise, hypothesis. Furthermore, it provides confidence that 

inferences made about observed changes or differences in regularity are the result of 

purposeful rather than random processes. This outcome can be achieved by contrasting 

observed data with data generated from surrogate methods (Small, Nakamura, & Luo, 2007; 

Theiler, Eubank, Longtin, Galdrikian, & Doyne Farmer, 1992). Surrogate methods can 

produce time series which resemble observed data yet present properties consistent with a 

non-deterministic signal.  

Various surrogate techniques exist for different applications (Small et al., 2007). Many of 

these techniques deal with intrinsically stochastic signals. These methods may be applied to 

deterministic data by pre-filtering the observed signal to remove the deterministic 

component. However, segmentation of data into noise and deterministic components can 

result in spurious effects (Theiler & Eubank, 1993). When dealing with human movement 

data, surrogate methods designed for use with deterministic signals need to be considered. 

Due to its cyclical nature, human gait has previously been investigated using a pseudo 

periodic surrogate method (Miller, Stergiou, & Kurz, 2006; Preatoni et al., 2010). This 

method derives a noise contaminated signal from a reconstruction of the underlying 

deterministic dynamic (a phase space created via time delay embedding consistent with 

Takens (1981) theorem). However, this method is inappropriate for discrete movements. 

This is due to the data consisting of N short time series rather than the type of continuous 

and repetitive time series which facilitate time delay embedding. That is, despite resembling 

a continuous and periodic variable when concatenated together, the final value of one 

trial/cycle does is not a neighbour to the initial value of the next, excluding the pseudo 

periodic surrogate and other surrogate methods which employ time delay embedding. 

Therefore, the purpose of this article is to propose a generalisation of the pseudo periodic 

surrogate method, without time delay embedding, which can be applied to discrete 
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movement data. It is expected that this technique will produce outcomes similar to those of 

the Small shuffled surrogate method (Nakamura & Small, 2005, 2006), whereby the 

sequence of data is shuffled on a fine scale, destroying the micro structure of the original 

data (relationship between each datum and those immediately surrounding it), while the 

macro structural elements of the data (mean, variance, length) are maintained. The use of 

the proposed technique, quantification of critical values and the implementation of sample 

entropy to test for deterministic dynamics within discrete human movement will then be 

outlined.  

Method 

Participants 

This project was approved by the Australian Catholic University Human Research Ethics 

Committee. Ten male participants [24.1 (3.3) years; 176.6 (5.9) cm; 76.4 (7.8) kg] provided 

informed consent and had their data included in this study. The task chosen to demonstrate 

surrogate generation was an overarm throw toward a target. Participants were seated on an 

adjustable piano stool with knee and ankle angles approximating 90° and anatomical 

orientation respectively. The piano stool was placed 7 m from a projection screen (5 m x 3 

m) upon which a 70 cm round target consisting of 5 concentric circles was projected with the 

target centre being at a height of 2 m. Participants were seated such that their frontal plane 

was oriented perpendicular to a line projected from the centre of the target to the piano stool. 

Participants attended two sessions where they performed two blocks of trials with 16 throws 

per block. The choice of 16 throws per block was based on previous work (Taylor, Lee, 

Landeo, O’Meara, & Millett, 2015). Kinematic data were collected using a 10 camera (6 MX 

and 4 T-series) Vicon (Oxford Metrics, Oxford, UK) motion capture system, operating at 400 

Hz. A Basler A602fc camera (Basler AG, Germany) recording at 100 Hz was used to capture 

ball release for later data cropping. Following data collection, three-dimensional joint angles 

– shoulder internal/external rotation and flexion/extension at the elbow and wrist – were 
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calculated. All angle data were cropped from the first target-directed motion of the finger 

marker through to ball release. Following investigation of the residuals (Winter, 2005) and 

frequency content of the data, all time series were filtered at 12 Hz using a 4th order 

Butterworth filter.  

Surrogate Technique 

The following details the surrogate generation method. 

1. Let xij and yij be the jth scalar time point from the ith trial of observed joint angle time 

series (e.g. where xij is elbow angular displacement and yij is the same for the 

shoulder). Let the concatenated time series X and Y be;  

𝑋𝑋 = (𝑥𝑥𝑖𝑖𝑖𝑖) 𝑖𝑖=1,…,𝑁𝑁
𝑗𝑗=1,…,𝑇𝑇𝑖𝑖

 

𝑌𝑌 = (𝑦𝑦𝑖𝑖𝑖𝑖) 𝑖𝑖=1,…,𝑁𝑁
𝑗𝑗=1,…,𝑇𝑇𝑖𝑖

 

where N is the total number of trials collected, Ti is the total number of data points in 

the ith trial and X and Y are matrices with dimensions ∑ 𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1 .  

2. Then the concatenated time series X and Y are combined to form a phase space, P, 

where P is a matrix with dimensions 2 ∗ ∑ 𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1 ; 

𝑃𝑃 = (𝑋𝑋𝑖𝑖𝑖𝑖 ,𝑌𝑌𝑖𝑖𝑖𝑖) 𝑖𝑖=1,…,𝑁𝑁
𝑗𝑗=1,…,𝑇𝑇𝑖𝑖

 

3. Initial (A) and final (B) conditions of individual trials within P are extracted where A 

and B are both 2 x N matrices; 

𝐴𝐴 = (𝑥𝑥𝑖𝑖1,𝑦𝑦𝑖𝑖1)𝑖𝑖=1,…,𝑁𝑁 

𝐵𝐵 = (𝑥𝑥𝑖𝑖𝑇𝑇𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑇𝑇𝑖𝑖)𝑖𝑖=1,…,𝑁𝑁 
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4. Elements of P are then shuffled, with no new entries (randomly resampled with 

replacement), to form the surrogate Ps. First an initial current state Ps(i,t) is selected at 

random from A. Set t = 1. 

5. To select the next state of Ps first noise is added to the current state creating C; 

     𝐶𝐶 =  𝑃𝑃𝑠𝑠(𝑖𝑖,𝑡𝑡) + 𝜌𝜌𝜌𝜌𝑃𝑃𝑠𝑠(𝑖𝑖,𝑡𝑡)  

where ρ is a constant and g is Gaussian noise; 

     𝑔𝑔 ~ 𝑁𝑁(0,1) 

6. The state in P which is closest to the noisy current state C created above is identified 

as km,n using the least root mean square difference between C and each column of 

the matrix P. Then the next state of Ps is defined as the successor; 

𝑃𝑃𝑠𝑠(𝑖𝑖,1+𝑡𝑡) =  𝑘𝑘𝑚𝑚+1,𝑛𝑛+1 

7. The state Ps(i,1+t) is now the current state of Ps. Increment t. The next state of Ps is 

selected by repeating steps 5–6. The process of incrementing t and selecting the 

next state continues until the current state of Ps is equal to one of the sets in B.  

8. The value i can then be incremented and steps 4–7 repeated to obtain the next 

surrogate. 

This method is documented here using two concatenated input variables (X and Y in step 1). 

Researchers should use the knowledge of their own data to ensure there is a suitable level 

of appropriateness when selecting these input variables, avoiding the use of unrelated or 

irrelevant combinations. However, as long as this level of appropriateness is maintained 

there is no theoretical limit to the number of input variables that are used to form the phase 

space P at step 2. As such the matrix P could be defined such that its dimensions are  𝑉𝑉 ∗
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∑ 𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1   where V is equal to the number of input variables. Matrices A and B would then be V 

x N in dimension.  

Determining ρ 

An optimal value for ρ elicits the greatest number of small segments within the surrogated 

time series (Small, Yu, & Harrison, 2001), providing an optimal balance between effectively 

destroying the fine-scale dynamics of the signal and maintaining its macro structure. A small 

segment is defined as any run of surrogate data of length between 2 and the total length of 

the surrogate, identical to one existing at any point within the original data set. The segment 

is created when a switch in the sequence of data in P, currently being sampled to provide 

the next state of Ps, occurs. When ρ is very small (at or approaching zero) the number of 

small segments will be zero as original data and surrogate will be identical. As ρ increases, 

so too will the number of small segments, towards a maximum, before returning toward zero 

(as ρ → ∞). A large range of values for ρ (0–5; increments of 0.1) were tested 100 times 

using a block of data of one participant (Figure 1a). This identified the probable range (0.1 – 

0.9 and 0.1 – 2.0 for two and three dimensional phase spaces respectively) over which to 

test for individual peaks in small segments (Figure 1b). Each participant’s data were then 

tested over this range five times, and the ρ value associated with the highest mean number 

of small segments was selected (e.g., Figure 1c). This resulted in an individualised value for 

ρ to be used for surrogate generation for each block of 16 throws for each participant.  

**Figure 1 near here** 

Discrete Data Surrogate Generation 

To demonstrate the use of the technique with different multiples of input variables, two 

different surrogate generations were conducted. First, Elbow and Shoulder time series were 

concatenated and combined to form a two dimensional phase space from which the 

respective surrogates were drawn. Next, wrist time series were included to form a three 

dimensional phase space and the process was repeated. The number of surrogates 
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generated matched the number of throws in the observed data for each block. Surrogates 

with similar length (± 1SD) as the mean length in the original data were accepted to maintain 

comparability. If this criterion was not met, the surrogate was rejected and the process 

repeated. This process resulted in two elbow and two shoulder surrogate time series, from 

the two and three dimensional phase space generation, being produced for each observed 

throw included in the study. In addition, one wrist surrogate was produced via the three 

dimensional phase space for each observed throw.  

Validity and Reliability 

The biomechanical data used in this investigation was filtered, as is convention, to remove 

any systematic noise introduced by the data collection equipment. However, since surrogate 

data can appear similar to unfiltered/raw data, the surrogate generation process was also 

carried out on the raw movement data in addition to the filtered data. This analysis ensured 

that any observed differences in regularity between the data and its surrogate was the result 

of the methodology and not due to increased regularity introduced to the signal via the post 

collection smoothing. That is, if the raw data and its surrogate, as well as the filtered data 

and its surrogate, are both significantly different in regularity, this can be attributed to the 

surrogate method and not to any other conditioning of the observed data.  

To demonstrate the ability of the technique to produce surrogates which approximate the 

macro structure of the original data, surrogate Mean, SD and data length were compared to 

that of observed signals using Mann-Whitney U tests. Furthermore, the ability for these 

values to be produced reliably was tested by repeating the surrogate generation process 6 

times for each included block of throws. The mean, SD and length of the resultant data were 

assessed for reliability using intraclass correlation and standardised typical error tests 

(Hopkins, 2000, 2011). This was performed for surrogates produced both via two and three 

dimensional phase space.  
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Comparing Real and Surrogate Data 

Sample entropy values quantify the regularity of a signal by assessing the probability that 

two sequences of points extracted from a time series of length N, which are similar for a 

period of m points within a tolerance r, will remain similar for a period of m + 1 points 

excluding self matches (Lake et al., 2002; Richman & Moorman, 2000). The sample entropy 

estimates of the observed and surrogate data were used for statistical inference. It was 

hypothesised that the observed time series would return lower sample entropy estimates 

than surrogates as they are not solely the result of noisy, random processes, but contain 

some element of deterministic dynamics. The lower entropy estimate of the observed data 

would reflect the increased regularity of a signal under the control of the neuromuscular 

system as opposed to the random, stochastic process producing the surrogate.  

The choice of values for the parameters m and r will affect the outcome of the entropy 

estimate, and consistency between parameters used for real and surrogate data comparison 

is the key concern. Still, values of m = 2 and m = 3 as well as a range of r values (0.1 – 0.3) 

were tested as recommended (Yentes et al., 2013) to determine these values. As a result, 

the parameters of m = 2 and r = 0.1 were employed. Sample entropy estimated for the 

concatenated real and surrogate time series of the three joint angles for all blocks of throws. 

These estimates were compared using the Mann-Whitney U test. Non parametric statistics 

were employed as data did not display normality (Peat & Barton, 2005). 

Results 

Surrogate generation was successfully conducted via the documented algorithm using both 

two and three dimensional phase spaces. An example of concatenated real and surrogate 

data as well as a single real and surrogate throw can be seen in Figure 2 (two dimensional 

phase space).  

**Figure 2 near here** 
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The comparison of macro characteristics (mean, SD and length) showed no significant 

differences between the real and surrogate throws (p ≥ 0.68). There were also no significant 

differences between the mean, length and SD of elbow and shoulder surrogates produced 

via two and three dimensional phase space (p ≥ 0.61). The group mean value of ρ was 

significantly higher for the three dimensional phase space surrogate generation (p < 0.01). 

However, the number of short segments produced by this increased ρ value was no different 

(p = 0.55) between two and three dimensional applications. Reliability analysis indicated that 

the surrogate generation algorithm was able to consistently produce this output as indicated 

by an ICC ≥ 0.99 and a small standardised typical error of ≤ 0.1 (Hopkins, 2000, 2011).  

Comparison between the sample entropy estimate of real and surrogated data for Elbow, 

Shoulder and Wrist angles can be seen in Figure 3. Results of the Mann Whitney U tests 

indicated that observed time series had significantly lower sample entropy (p ≤ 0.05) than 

their respective surrogate for all joint angles across both two and three dimensional phase 

space generation. This was observed for both the filtered and unfiltered/raw data. There was 

no significant difference between the entropy estimates of the elbow and shoulder 

surrogates produced via the two and three dimensional phase space (p ≥ 0.08).  

**Figure 3 near here**  

Discussion 

The purpose of this paper was to propose a surrogate generation method for discrete 

movement data and to illustrate its use - i.e., to demonstrate that these data were not solely 

the result of stochastic processes. Shoulder, elbow and wrist joint angle time series were 

taken from an overarm throwing task and appropriate surrogates generated.  Reliability 

analyses suggest that this method can be depended upon to consistently produce the 

expected outcomes. All surrogate time series effectively maintained the overall trends in the 

observed data (Figure 2), as confirmed by the Mann Whitney U results showing no 

significant difference in the mean, SD and length between real and surrogate data. While the 
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macro characteristics of the observed data were maintained, comparison of the sample 

entropy estimate for both real and surrogate data (Figure 3) showed that the observed 

discrete human movement is not solely the product of non-deterministic ‘noisy’ processes. 

Furthermore, repeating the process using unfiltered/raw data produced the same results 

indicating that the differences between observed and surrogate data is the result of the 

surrogate method and not from any post-processing (increased regularity due to filtering) of 

the data. 

The documented method is theoretically capable of producing surrogates using any number 

of input variables, greater than or equal to two, by creating an equally dimensioned phase 

space. To demonstrate this, two and three variables were used to form two and three 

dimensional phase spaces respectively. Results showed that surrogates were effectively 

created using both approaches. However, despite no significant differences in the macro 

characteristics, the entropy estimates or in the number of short segments created, the 

selected values for ρ were significantly higher for each participant in the three dimensional 

phase space approach. This can be attributed to the requirement of a greater noise radius to 

effectively select the nearest noisy neighbour due to the increased distance between 

trajectories that exist in a higher dimensional phase space. Qualitatively, it did appear that 

the increased ρ resulted in ‘noisier’ surrogates being produced via the three dimensional 

phase space, supported by the p values of the compared surrogates appearing to approach 

significance (p ~ 0.08). In addition to determining whether the variables being combined to 

form the phase space in this method are appropriate for the task, researchers should also 

ensure that the dimensions employed have the desired effect on surrogate outcomes.  

This study is not the first to investigate the use of surrogate techniques with human 

movement data. Previous work using a pseudo periodic surrogate with normal walking and 

race walking (Miller et al., 2006; Preatoni et al., 2010) successfully displayed the presence of 

deterministic dynamics within the time series taken from these tasks. While the discrete data 

used in this study can appear cyclical when concatenated (Figure 2a), discontinuities are 
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present which do not exist in cyclical data. Hence, the discrete, separate trajectories of the 

current data required a new method capable of producing multiple surrogates with multiple 

random walks from a single phase space formed by embedding multiple observed time 

series as opposed to one created by time delay embedding (Takens, 1981) such as with 

pseudo periodic surrogates. Hence, the concatenated data of two or more joint rotations 

(step 1 in Surrogate Technique) are brought together to form the phase space (step 2 in 

Surrogate Technique) which maintained the biomechanical relationship between variables.  

In conclusion, the proposed method effectively produced surrogates for comparison with 

collected discrete movement data. This comparison identified that the observed signal is not 

solely the result of stochastic processes suggesting the presence of deterministic dynamics. 

Coupled with the ability of the algorithm to consistently produce the expected outcome, the 

modified small shuffle surrogate method is both a valid and reliable technique to investigate 

the stated hypotheses in other discrete human movement time series. 
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Figure Captions 

Figure 1: Results of testing over a large range of ρ values (a), probable range for individual 

values of ρ (b) and results of testing over this range for a single participant (c) 

Figure 2: All throws concatenated and a single throw for observed (a & b) and surrogate (c 

& d) data 

Figure 3: Median (± inter-quartile range) sample entropy estimate for observed and 

surrogate data across the three included joint rotations. All surrogate data sample entropy 

estimates were significantly greater than their respective observed data estimate (p < 0.05).  
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Figure 1 
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Figure 2 
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Figure 3 
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