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Power of Latent Growth Curve Models to Detect Piecewise Linear Trajectories 

 

Abstract 

Latent curve models (LCMs) have been used extensively to analyse longitudinal data. However, little 

is known about the power of LCMs to detect nonlinear trends when they are present in the data. This 

simulation study was designed to investigate the Type I error rates, rates of nonconvergence and the 

power of LCMs to detect piecewise linear growth and mean differences in the slopes of the two joined 

longitudinal processes represented by the piecewise model. The impact of seven design factors was 

examined: number of time points, growth magnitude (slope mean), inter-individual variability, sample 

size, position of the turning point, and the correlation of the intercept and the second slope as well 

between the two slopes. The results show that previous results based on linear LCM can not be fully 

generalized to a nonlinear model defined by two linear slopes. Interestingly, design factors specific to 

the piecewise context (position of the turning point and correlation between the two growth factors) 

had some effects on the results but these effects remained minimal and much lower than the effects of 

other design factors. Similarly, observed rates of inadmissible solutions are comparable to those 

previously reported for linear LCMs. The major finding of this study is that a moderate sample size is 

(n = 200 ) need to detect piecewise linear trajectories, but that much larger samples (n = 1500) are 

required to achieve adequate statistical power to detect slope mean difference of small magnitude. 

 

Keywords: power analysis, latent curve models, piecewise trajectory, mean difference, structural 

equation models, Monte Carlo, convergence, Type I error rates.  
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 Latent Curve Models (LCM; Meredith & Tisak, 1990) are naturally suited to the analysis of 

longitudinal processes and increasingly used in applied research settings. LCM can be equivalently 

operationalized (e.g., Curran, 2003) within the multilevel (e.g., Bryk & Raudenbush, 1992) or the 

Structural Equation Modeling (SEM; e.g., Bollen & Curran, 2006) framework, although our focus is 

on the SEM approach. LCM can be extended to incorporate a variety of polynomial trends (i.e., 

quadratic, cubic, etc.) or even more complex nonlinear functions (e.g., exponential, logistic, etc.) of 

growth (e.g., Blozis, 2007; Browne & DuToit, 1991; Grimm, Ram, & Hamagami, 2011; Ram & 

Grimm, 2007). However, although polynomial functions allows developmental trends to evolve over 

time, these models usually estimate smoothed trajectories and assume that the direction of the 

developmental process will eventually change over time. For instance, an initially sharp increase will 

become less pronounced over time, before flattening out, and eventually starting to decrease in a 

quadratic inverted U-Shape function. These models thus fail to consider the possibility of sharp 

changes that are routinely expected with experimental/clinical studies, organizational changes, or 

important lifetime transitions (e.g., Eccles et al., 1993; Jones & Meredith, 2000; Shadish & Cook, 

2009), as well as the fact that these developmental trends may not necessarily change direction over 

time (i.e., sharp growth may stop, and then becomes less pronounced, without showing a decrease). 

Piecewise linear (PWL) LCM (Bollen & Curran, 2006; Flora, 2008) are a flexible alternative 

when specific transition points can be expected (life transitions, experiments, interventions, etc.). 

PWL-LCM are naturally suited to experimental or clinical studies were turning points can be 

specified as the beginning, or end, of the treatment. In PWL-LCM, nonlinearity is modeled by 

including two interrelated linear slopes reflecting the growth trajectory before and after the transition 

point. PWL models allow for the fact that both slopes might be differently related to predictors, 

outcomes, or time-varying covariates, while presenting either the same, or a different, average shape. 

Despite the extensive use of LCMs, very few studies provide systematic estimates of the 

statistical power of the LCM to detect specific types of development (linear, quadratic, piecewise, 

etc.). Most of statistical studies of the power of LCM were concerned with the capacity of these 

models to detect between group differences (Duncan, Duncan, Strycker, & Li, 2002; Fan, 2003; 

Muthén & Curran, 1997), a covariance component among two linear rates of change (Hertzog, 
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Lindenberger, Ghisletta, & von Oertzen, 2006), individual differences in change (Hertzog, von 

Oertzen, Ghisletta, & Lindenberger, 2008), covariate intercepts interactions (Sun & Willson, 2009), or 

longitudinal mediation (Cheong, 2011), rather than the ability of these models to correctly estimate 

the shape of the trajectories, which represents an important pre-requisite to the use of these models. 

To our knowledge, only two studies did so. The first of those studies was not designed as a simulation 

study. Zhang and Wang (2009) developed a SAS macro to help applied researchers to conduct a priori 

power analyses for linear and nonlinear LCM functions (excluding PWL models) as a function of a 

limited set of conditions including sample size, growth magnitude and number of measurement points. 

To illustrate this macro, they report a short power analysis of linear and exponential LCM. Their 

results showed that for linear trajectories, power increased with sample size (50 to 1000), effect sizes 

(three different mean of the linear slope factor: .1, .2, .3), and number of measurement points (3 to 6). 

Regarding the exponential trajectory, fewer conditions were investigated and power was found to 

increase with sample size (100 to 1000). In the second study, Fan and Fan (2005) compared the 

capacity of linear LCM to detect linear growth as a function of the number of time points (4 

conditions: 3 to 9), growth magnitude (6 conditions: .20 to .80) and sample size (10 conditions: 50 to 

500). Their results confirm the role of most of these conditions on the power of LCM to detect linear 

growth, but surprisingly showed that the number of repeated measures had no effect. This result was 

unexpected given previous observations that this factor played a significant role in influencing ĿCM 

power to detect linear and exponential growth (Zhang & Wang, 2009) or the covariance between 

linear slopes (Hertzog et al., 2006). Their results also showed that, with 3 time points, LCM was 

associated with increased rates of nonconvergence. Clearly, these results deserve replication.  

Most previous studies focused on linear trajectories, which is a very strict assumption to hold 

when modeling real life longitudinal data where nonlinear trajectories have frequently been observed 

(e.g., Grimm et al., 2011; Morin, Maïano, Nagengast, Marsh, Morizot, & Janosz, 2011; Ram & 

Grimm, 2007). In addition, none of these studies specifically considered PWL models. Thus, although 

we can often reasonably expect longitudinal processes to follow nonlinear trajectories (e.g., Grimm et 

al., 2011; Ram & Grimm, 2007), we currently have little information regarding the power of LCMs to 

detect nonlinear trends, especially PWL processes, when they are present in the data. Given that PWL 
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models are naturally suited to experimental or treatment studies where a priori determination of power 

is often of major importance, this lack of knowledge seems quite dramatic. The present simulation 

study examined the power of LCM in detecting nonlinear growth defined by two linear trends. In 

addition, we also address the issue of nonconvergence (i.e., converging on inadmissible solutions). 

Piecewise Linear Trajectory Model 

Let us assume a series of six equally spaced repeated measurements Yit, for individual i at 

time t. In scalar terms, a PWL-LCM is represented as:  

 1 1 2 2it i t i t i itY I S Sλ λ ε= + + +   (1.1) 

where Ii is the intercept of individual i growth trajectory, λ1t is the time score for the first slope S1i, λ2t 

is the time score for the second slope S2i, and εit is the time specific residual for individual i. Growth is 

represented by imposing constraints on the time scores (λ1t or λ2t) usually specified to reflect the 

passage of time. S1i and S2i reflect the level of change in Y that is observed for individual i between 

two consecutive time points (i.e., when λ1t or λ2t changes by one unit). S1i reflects linear growth 

occurring before the turning point (or transition point, or knot) whereas S2i reflects linear growth 

occurring after the turning point. Because each of these latent factors is a random variable, Ii, S1i, and 

S2i can be described by the average level observed in the sample ( Iµ ,
1Sµ ,

2Sµ ), plus a variance 

component reflecting inter-individual deviations from the growth factor means (
iIζ , 

1iSζ , 
2 iSζ ): 
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This representation enables us to have two distinct linear “pieces”, one before the turning point and 

one after the turning point, which should usually be determined based on theoretical or experimental 

considerations. Strictly speaking, there is no need for 
2Sµ  to be significantly different from 

1Sµ or for 

2Sζ  to be significantly different from 
1Sζ  in order to properly specify a PWL-LCM– only a sufficient 

reason to expect individual trajectories to change before and after to turning point. Indeed, it may be 

far more interesting to verify whether the determinants or outcomes of S1i differ, or not, from those of 

S2i, or whether S1i predicts S2i in the context of complex mediation models (e.g., Cheong, MacKinnon, 
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& Khoo, 2003). However, changes located at the level of the average growth process or levels of 

intra-individual variability may also present a substantive interest in the context of experimental 

studies, and sometimes one may even be interested in locating an empirically determined turning 

point, for instance, in order to study latency in experimental effects. In this context, this turning point 

can be located with modification indexes showing where the fixed loadings on the slope factor need to 

be relaxed due to the presence of the turning point (e.g. Kwok, Luo, & West, 2010) or with a latent 

basis model with empirically estimated loadings imposing no specific shape on the trajectory (e.g. 

Grimm et al., 2011; Ram & Grimm, 2007). Further extensions are available in the context of Mixed 

Linear Models (Cudeck & Harring, 2007; Cudeck & Klebe, 2002), allowing for the estimation of 

PWL models where the turning point is empirically identified and allowed to differ between subjects.  

More precisely, when estimated within the SEM framework, LCM are specified as restricted 

factor models, where the growth factors (I, S1 and S2) influence the repeated measures through fixed 

loadings reflecting the passage of time. In matrix form, for a PWL-LCM model with a turning point 

occurring in the third occasion, equation (1.1) is expressed as: 

 
i i iY η ε=Λ + , with iε ~ N (0, Θ) (1.3)  

where  
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Θ  

and where, Yi is a 6x1 vector of repeated measures for individual i over the six repeated 

measurements, Λ is a 6x3 matrix of factor loadings, ηi is a 3x1 vector of latent variables, and εi is a 

6x1 vector of time specific residuals following a normal distribution with mean 0 and a 6x6 

covariance matrice (Θ) of εi with residual variances θ1 to θ6 (for consistency with previous studies, in 

this study this matrix is assume to be diagonal and homoscedastic). The factor loadings associated 

with I are in the first column {1, 1, 1, 1, 1, 1}. The loadings associated with S1 are in the second 

column {0, 1, 2, 2, 2, 2} and reflect linear growth between the first three time points (after which the 
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equal loadings allow the remaining growth information to be absorbed by S2), and the factor loadings 

associated with S2 are in the third column {0, 0, 0, 1, 2, 3}, reflecting linear growth between the last 

three time points (before which the equal 0 loadings allow the preceding growth information to be 

absorbed by S1). An alternative representation of the PWL-LCM model can also be estimated where 

the loadings on the S1 are rather specified as in a linear LCM {0, 1, 2, 3, 4, 5}. In this added‐rate 

model S2 represents the difference in linear change between the second and first period and is 

particularly useful in some of the contexts in which one wishes to evaluate how people have been 

deflected from the trajectories they were on before as a function of intervention/treatment. 

The mean structure of equation (1.3) can be expressed as  

 
i iηη µ ζ= + , with iζ ~ N (0, Φ) (1.4) 

where µη is a 3x1 vector of means and ζi is a 3x1 vector of inter-individual variability around µη, that 

is assumed to follow a normal distribution with a mean of 0 and a 3x3 covariance matrice of 

individual deviations from the growth factor means Φ such that 
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where Iφ is the inter-individual variance of I, 
1Sφ is the inter-individual variance of S1, 

2Sφ is the inter-

individual variance of S2, 
1ISφ is the covariance between I and S1, 

2ISφ is the covariance between the I 

and S2, and 
1 2S Sφ is the covariance between S1 and S2. Figure 1 graphically presents this PWL-LCM. 

Purposes of the study 

In this study, we investigate empirical power rates associated with the detection of PWL 

growth over time (defined as
2Sµ ), as well as the difference between the two slopes (defined as 

1 2S Sµ µ− ). More specifically, we investigate the effects of the number of time points, growth 

magnitude and inter-individual variability, sample size, the position of the turning points and the 

correlation between the second slope factor and other growth factors (the intercept and the first slope) 

on the statistical power to detect 
2Sµ  and 

1 2S Sµ µ− , Type I error rates and rates of nonconvergence.  



Piecewise Trajectories 

 

8 

Method 

Statistical Model 

The population models used in this study are PWL-LCM as previously defined. The data were 

generated under multivariate normality conditions. All observed variables were specified as 

continuous, and the piecewise linear growth was modeled with equally spaced time intervals. In the 

data generation process, we fixed the mean and variance of I and S1 and the covariance between I and 

S1, and varied the mean and variance of S2. More precisely, Iµ  was fixed to 1, 
1Sµ was fixed to .16 

(reflecting a medium growth for the first slope; e.g., Kwok, West, & Green, 2007; Kwok et al., 2010), 

Iφ  was fixed to .2, 
1Sφ  was fixed to .1 (reflecting a medium level of inter-individual variability for the 

first slope; e.g., Kwok et al., 2007, 2010), and 
1ISφ  was fixed to .05. Across conditions, the residual 

variances of the measures were specified as homoscedastic and fixed to .2.1  

Data are generated under different conditions defined by the combination of growth 

magnitude of S2, sample size, number of measurement occasions and position of the turning point. 

These conditions represent potentially critical factors that can affect the statistical power. Based on 

previous studies (Cheong, 2011; Fan & Fan, 2005; Hertzog et al., 2006; Sun & Willson, 2009), it is 

expected that the power to detect PWL growth will be enhanced as the sample size and the size of the 

effect (i.e., 
2Sµ  or 

1 2S Sµ µ− ) increase. We also considered the effect of the variability of S2 (
2Sφ ) 

since the amount of inter-individual variability in growth has been previously found to play a role in 

influencing the size of biases induced by model misspecifications in LCM (Kwok et al., 2007; 

Voelkle, 2008). In this regard, we expect power to decrease as a function of the size of 
2Sφ  and to 

increase as a function of t, the number of repeated measurements (Cheong, 2011; Hertzog et al., 2006; 

but see Fan & Fan, 2005). Given the equivalence of SEM-based and multilevel-based LCM (e.g., 

Curran, 2003), repeated measurements constitute observations taken at the level 1 (within-person). It 

has also been previously argued that increased number of measurement points allows for a greater 

precision in the estimation of LCM (Cheong, 2011; Singer & Willett, 2003), and to result in lower 

rates of convergence problems (Fan & Fan, 2005). We also investigate the impact of the position of 
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the turning point. Indeed, the position of the turning point influences the number of time points 

available to estimate S2 and thus combine with the total number of measurement occasions and 

sample size in influencing empirical power rates, Type I error rates, and rates of nonconvergence. 

Finally, another potentially important facet of PWL is the correlation between the growth factors, 

especially between the second slope and the intercept and first slope as these reflect the extent to 

which the trajectories estimated before and after the turning points exchange information. Given the 

total number of manipulated factors, we rely on a combination of a full factorial design for the main 

factors usually manipulated in power studies (mean and variance of S2, sample size, and t) with a 

partial factorial design for the remaining factors (position of the turning points and correlations 

between the growth factors) which are each fully crossed with the main manipulated factors, but not 

with one another (e.g., Beauchaine & Beauchaine, 2002; Tofighi & Enders, 2007).  

Full Factorial Design 

Mean and variance of S2. In this simulation study we focus on the detection of 
2Sµ  and of 

1 2S Sµ µ− . These parameters (slopes, and slope difference) refer to clear and testable effects of direct 

relevance to developmental and experimental studies. Following Kwok et al. (2010), we simulated 

data with 4 different values of 
2Sµ  reflecting respectively a small, moderate, large and null change 

from 
2Sµ : (a) .11 (i.e., 

1 2S Sµ µ−  = .16-.11 = .05, a small difference); (b) 0 (i.e., 
1 2S Sµ µ− = .16 – 0 = 

.16, a moderate difference); (c) .55 (i.e., 
1 2S Sµ µ−  = .16-.55 = -.39, a large difference); (d) .16 (i.e., 

1 2S Sµ µ−  = .16-.16 = 0, a null difference). Figure 2 presents the first three average trajectories. We 

voluntarily limited this simulation to situations where PWL development may be less obvious, simply 

marked by a change of magnitude rather than a change in direction. However, we expect the results to 

fully generalize to the similar scenarios marked by changes in directions (e.g., where 
2Sµ = -.11 or -

.55, or  
1 2S Sµ µ−  = -.05, -.16, -.39). We also considered 3 levels of 

2Sφ , to reflect low (
2Sφ  = .05, or 

SD = .22), moderate (
2Sφ = .16, or SD = .4) or high (

2Sφ  = .36, or SD = .6) levels of variability.  

Sample size. We simulated data based on 11 different sample sizes in line with values 
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considered in previous studies (Ferron, Dailey, & Yi, 2002; Kwok et al., 2010): 30, 50, 100, 150, 200, 

300, 500, 1000, 1500, 2000, and 3000. The first two values were chosen in order to evaluate the 

power and Type I error rates in samples smaller that what is usually seen in applied LCM research, 

especially in combination with increasing number of measurement points so as to reflect a reality that 

is more common in the context of time series analyses with few participants, but multiple waves (e.g. 

Hamaker, Dolan, & Molenaar, 2005). Even though the empirical power curves flattened after 300 

cases for 
2Sµ , the last four values were more relevant to the detection of 

1 2S Sµ µ− .  

Number of measurement occasions. We considered 3 different conditions regarding the 

number of measurement points: 6, 8 and 10. We chose 6 as the minimum number of measurement 

points in order to be able to estimate all turning points conditions within each time point conditions 

while keeping all models fully identified (Bollen & Curran, 2006). Finally, the last two conditions 

were selected to reflect a moderate and high number of measurement occasions.  

Partial Factorial Design 

Turning point. In this study we generated data with the transition point occurring at different 

time points: 2, 3 and 4. Each of these three conditions was investigated in combination with all of the 

levels on the previous factors, for a total of 1188 (4 values of 
2Sµ X 3 levels of 

2Sφ  X 11 sample sizes 

X 3 conditions for the number of measurement points X 3 positions for the turning point) conditions. 

The first transition point enabled us to study situation where transition occurs early in the longitudinal 

process (e.g., Kwok et al., 2010), which can be a realistic condition for treatment studies with multiple 

baseline measurements (i.e. initial evaluation and intake). This condition represents a suboptimal 

LCM model where the first slope is estimated based on only two measurement points and is thus only 

identified here because the errors are specified as homoscedastic. However, clinical studies seldom 

include more than two baseline measures (and often a single one, precluding PWL-LCM analyses 

altogether) so we deemed it of practical significance to verify the properties of this condition. We note 

however that “suboptimal” does not mean that this model is problematic in any way as the 

homoscedasticity of the residuals is an assumption commonly made in LCM studies (Chou et al., 

1998; Cheong, 2011; Fan & Fan, 2005; Sun & Willson, 2009). The last two conditions reflect a 
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situation where the transition occurs later in the longitudinal process. In all conditions where the 

effect of the position of the turning point was manipulated, both 
2ISφ  and 

1 2S Sφ were fixed to 0. 

Correlation of the second slope growth factor with the intercept and the first slope. To 

investigate the impact of 
2ISφ and 

1 2S Sφ  on the power, Type I error rates and rates of nonconvergence, 

we generated data with 4 different values for correlation between I and S2 [corr(I,S2)] as well for the 

correlation between S1 and the S2 [corr(S1,S2)]: 0, .1, .25 and .5 to reflect no, low, moderate and high 

correlation. Each of these conditions was investigated in combination with all of the levels on the 

main factors, for a total of 6336 [4 values of 
2Sµ  X 3 levels of 

2Sφ  X 11 sample sizes X 3 conditions 

for the number of measurement points X 4 values of corr(I,S2) X 4 values of corr(S1,S2)] conditions. 

In all conditions where the effect of the correlations among the growth factors was investigated, the 

turning point was located at the third measurement occasion.  

Data generation and Analysis.  

In other to ensure that stability of the Monte Carlo simulation has been reached, 10,000 

replications were generated for each design cell. First, we generated data for each cell and recorded 

the percentage of the nonconverging samples before discarding those samples. Second, new samples 

were generated until 10,000 converging samples were obtained for each cell. All simulations were 

conducted using the Mplus 6.11 statistical package (Muthén & Muthén, 2011) and the true models 

were always estimated. The outcome variables were the empirical power to detect
2Sµ  and 

1 2S Sµ µ− 2 

when they are in fact different from 0 in the population model, the empirical Type I error rates when 

2Sµ  or 
1 2S Sµ µ− are equal to 0 in the population model, and the proportion of inadmissible solutions 

(e.g., nonpositive definite variance-covariance matrix). Because of the strong ceiling effects of power 

data, parametric and nonparametric analyses were conducted and results were compared. The 

Kruskal-Wallis (K-W) test agreed with the parametric one-way ANOVAs most of the time. These 

results are reported in the Table. Extensive results tables are available in the online supplements 

accompanying this manuscript. This simulation was made possible through the possibility to access 

Compute Canada high performance computing facilities (https://computecanada.ca/). 
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Results 

Type I error rates for 
2Sµ  and for 

1 2S Sµ µ− . 

Type I error rates were significantly related to the sample size, the number of measurement 

points, and the variability of S2. The effects of the other conditions [position of the turning point, and 

the size of corr(I, S2) and corr(S1, S2)] were not statistically significant predictors of Type I error rates 

associated with 
2Sµ , but the size of corr(S1, S2) did influence Type I errors rates associated with 

1 2S Sµ µ− . Type I error rates remained low across conditions, ranging between 3% and 6% with very 

few cells reaching 7%. The average Type I error rates were all close to the nominal value of .05 across 

all conditions. For instance, for 
2Sµ , the average errors rates did not differ across conditions and were 

.046, .047 and .045 (.051, .050, and .051 for 
1 2S Sµ µ− ) respectively for a turning point located at the 

second, third, and fourth measurement points. The number of measurement points slightly increased 

Type I error rates to .043, .049 and .048 (.047, .052, and .052 for 
1 2S Sµ µ− ) respectively for models 

including 6, 8 and 10 measurement points. Significantly larger Type I error rates were associated with 

the smallest sample sizes (n =30, for 
2Sµ M = .057, for 

1 2S Sµ µ−  M = .064). The average errors rates 

are not influenced by the correlation between I and S2 and are equal to .048, .047, .047 and .047 (.051, 

.05, .05 and .049 for 
1 2S Sµ µ− ) respectively when corr(I, S2) equal 0, .1, .25, and .5 across conditions. 

Conversely, the Type I error rate associated with 
1 2S Sµ µ−  [.051, .050, .050, and .049 for 

1 2S Sµ µ−  

when corr(S1, S2) equal 0, .1, .25, and .5], but not 
2Sµ  (.047, .049, .047 and .046), shows a significant, 

yet negligible, association with the size of corr(S1, S2). Finally, the average Type I error rate was .046 

when S2 showed a small variation (SD = .22), .046 when S2 showed a moderate variation (SD = .4) 

and .048 when S2 showed a large variation (SD = .6) (.049, .051, and .05 for 
1 2S Sµ µ− ).  

Power to detect 
2Sµ  

Empirical power rates were significantly influenced by level and variability of S2 and sample 

size. However, the number of measurement points, the position of the turning point and the size of the 
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correlation between I and S2 as well between S1 and S2 did not affect the power to detect 
2Sµ .  

Level and variability of S2. Consistent with statistical theory, power rates were affected by 

2Sµ , and the SD of S2. Power increased as 
2Sµ increased but decreased as the SD of S2 increased. The 

average power was of .845 when 
2Sµ was .11 and 1 when 

2Sµ was .55. Similarly, the average power 

was .977 when S2 showed a small variation (SD = .22), .926 when S2 showed a medium variation (SD 

= .4) and .865 when S2 showed a large variation (SD = .6) (all differences significant).  

Sample size. Power increased as a function of sample size, varying from .692 (averaged 

across conditions) for n = 30 to 1 for n = 3000, and reached an acceptable level of .80 at n = 100. 

Summary. Figure 3 presents these results for the conditions where the 
2Sµ was .11, with 

power curves presented as a function of sample size, SD of S2, and the number of time points. Since 

power was not related to the position of the turning point or corr(I, S2) and corr(S1, S2), power curves 

were plotted for the main fully factorial condition where the turning point was located at the third 

measurement occasion, and corr(I, S2) and corr(S1, S2) were fixed to zero. Power curves were not 

plotted when 
2Sµ  was .55 as power rates remained systematically close to 1 in this condition. These 

curves show that sample sizes as low as 30 are sufficient to detect a large 
2Sµ . However, larger 

sample sizes are required to detect smaller 
2Sµ . To ensure a satisfactory power rate higher than .80 for 

the detection of a small 
2Sµ  showing substantial inter-individual variability, our results suggest that 

PWL studies should be based on samples of at least n = 200.  

Power to detect 
1 2S Sµ µ− .  

Empirical power to detect 
1 2S Sµ µ− was statistically related to the size of the difference, 

sample size, variability of S2, position of the turning point, number of measurement points, and the 

correlation between S1 and S2 , but not to the correlation between the I and S2.  

Slope mean difference and variability of S2. Power increased as the size of 
1 2S Sµ µ−  

increased. While the average power was satisfactory across conditions with a moderate (.16) and large 

(-.39) mean difference, it was very difficult to detect small mean differences (.05). More specifically, 
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the average power was of .472 with a small mean difference (.05), .861 with a medium mean 

difference (.16), and .992 with a large mean difference (-.39). The power to detect 
1 2S Sµ µ− was also 

negatively affected by the variability of S2  (all differences significant): .809 for a small variation (SD 

= .22), .782 for a moderate variation (SD = .4) and .734 for a large variation (SD = .6).  

Sample size. Power increased as a function of sample size, varying from .462 (averaged 

across conditions) for n = 30 to .995 for n = 3000, and reached an acceptable level of .80 at n = 500. 

Turning point. Power significantly increased as a function of the number of measurement 

points before the turning point, with average power of .700, .780, and .767 for turning points 

occurring at the second, third and fourth measurement occasions. Power rates for turning points 

occurring at the third and fourth occasions did not significantly differ from one another and were 

significantly higher than those associated with a turning point occurring at the second occasion.  

Number of measurement points. Power was positively and significantly affected by the 

number of measurement points. Furthermore, while the results show that average power remained 

slightly under the acceptable level of .8 across conditions for all time points, a statistically significant 

difference was noted between 6 measurement points (.757) versus 8 (.778) or 10 (.790).  

Correlation of the two slopes. Power was affected by the correlation between S1 and S2. The 

average power was .753 with no correlation between S1 and S2, .769 with a small correlation of .1, 

.783 with a moderate correlation of .25, and .811 with a large correlation of .5. A statistically 

significant difference was observed between the high correlation and the other conditions, as well as 

between the no and moderate conditions. No other differences proved significant.  

Summary. Since power rates were only slightly affected by the size of the correlation 

between S1 and S2, power curves are reported in Figures 4 to 6 for the main fully factorial condition 

where the turning point was located at the third measurement occasion and corr (S1, S2) was fixed to 

zero. There were no significant differences between this situation and the situation where the turning 

point was located at the fourth occasion, and only a slight decrease in power was observed when the 

turning point was located at the second occasion. To illustrate this (small) difference, power curves 

for the suboptimal situation where the turning point occurred at the second measurement point are 
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reported at the end of the online supplements. In summary, these curves show that, when the turning 

point is located at least at the third measurement occasion, sample sizes of n = 1500, but ideally n = 

2000 are needed to detect small slope mean differences, at least n = 200 to detect moderate slope 

mean differences, and as low as n = 30-50 to detect large slope mean differences. The comparative 

figures when only two measurement occasions are available before the turning point were of n = 2000 

but ideally n = 3000 to detect a small difference, n = 200 but ideally n = 300 for a moderate 

difference, and n = 50 for a large difference. These highly discrepant results as a function of the size 

of the slope mean differences clearly shows that researchers would do well to design their studies with 

clear a priori expectations regarding the size of the slope mean differences they wish to detect. 

Convergence.  

The percentage of nonconverging samples was statistically related to sample size, number of 

measurement points, position of the turning point, and size of the correlation between I and S2  and 

between S1 and S2. For the variation of S2 the nonparametric and parametric tests did not agree, but the 

results show this effect to be relatively small. The size of 
1 2S Sµ µ−  did not affect nonconvergence.  

Turning point. The rates of nonconvergence were negatively affected by the position of the 

turning point, being higher when the turning point was located earlier, and decreasing dramatically as 

the turning point position increased (i.e., 12.67%, 4.4%, 1.55% for turning points located at the 

second, third and fourth measurement points). This result suggests that rates of nonconvergence are 

impacted by the number of measurement occasions available before the turning point, but not after the 

turning point, and only when the number of measurement points available to estimate the first piece is 

not fully optimal. Indeed, when one compares rates of nonconvergence with only six measurement 

points, the rates of nonconvergence remain considerably higher when the turning point is at the 

second occasion (14.5%) than at the third (5.4%) or fourth occasion (2.6%).  

Sample size. Rates of nonconvergence decreased as sample size increased, varying between 

27.47% and 5% for n < 100, but systematically less than 1% for sample sizes > 200.  

Number of measurement points Rates of nonconvergence were significantly decreased 

when the number of measurement points increased (5.74%, 4.17% and 4.14% for 6, 8 and 10 
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occasions, averaged across conditions). A significant difference was observed between 6 and all other 

measurement occasions but not between 8 and 10 measurement occasions.  

Correlations. Rates of nonconvergence were slightly related to the size of the correlation 

between I and S2. The rates of nonconvergence, averaged across conditions, were 5.36%, 4.44%, 

4.1%, and 4.33% for no, small (.1), moderate (.25), and large (.5) correlations between I and S2. The 

conditions of small, moderate and high correlations were not significantly different from one another 

whereas the condition of no correlation was different from all other conditions. Rates of 

nonconvergence also varied as function of the correlation between S1 and S2. More precisely, rates of 

nonconvergence were respectively 4.68% (no correlation), 3.68% (small correlations), 3.94% 

(moderate correlation), and 6.44% (large correlation). The small and moderate correlations conditions 

did significantly differ from one another but all other conditions were different one another.  

Variability of S2. According to the parametric test, rates of nonconvergence were slightly but 

significantly related to the variability of S2. Average rates of nonconvergence, were 5.21% when S2 

had a small level of variation, 4.51% when S2 had a moderate level of variation and 4.34% when S2 

had a large level of variation. The conditions of moderate and large variation were not significantly 

different from one another but significantly lower than the condition with small variation. 

Summary. The rates of nonconvergence were less than 5 % across conditions. Mainly, these 

rates were higher for smaller sample sizes and when the turning point was closer to the beginning. 

This suggests that, in order to avoid higher than acceptable risks of nonconvergence, researchers 

should attempt to collect at least three measures before the expected turning point. In these cases, 

sample sizes as low as n = 100 result in acceptable rates of nonconvergence. Thus, if the choice is 

between collecting more measures before, or after, the expected turning point, the results suggest that 

it is better to invest before reaching the turning point, at least in terms of convergence.  

Discussion 

This study aimed to provide more precise guidelines in terms of sample size requirements for 

research using PWL models in order to estimate the magnitude of two joint longitudinal processes and 

the magnitude of the growth differences between these two processes. To this end, we examined 

empirical power rates as a function of the number of repeated measurements, sample size, size of the 
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second slope, levels of inter-individual variability in the second slope, position of the turning point, 

and correlations between the growth factors of the PWL trajectory. We similarly investigated the rates 

of nonconvergence and Type I error as a function of these same design factors.  

Our results generally supported our hypotheses regarding the impact of some of the design 

factors on Type I error rates, power and nonconvergence. The empirical Type I error rates were all 

very close to the nominal value of 5% and fluctuated normally around this value. Type I error rates 

related to the second slope as well the mean differences between the slopes were only significantly 

related to sample size and to the number of measurement points. In particular, Type I error rates 

decreased as a function of the number of measurement occasions and sample size. Overall, the results 

show that the PWL-LCM seldom ends up falsely detecting PWL growth or significant growth 

differences when none are present in the data, at least based on the conditions simulated in this study. 

For power, consistent with statistical theory, the results showed that power estimates were 

larger when the size of the effect (
2Sµ  or 

1 2S Sµ µ− ) was larger, sample sizes larger, and with smaller 

levels of inter-individual variability on the second slope factor. However, the correlation between the 

intercept and the second slope were not related to the power to detect the second slope or the slope 

mean difference. Regarding the number of measurement points, the position of the turning point and 

the correlation between the first and second slope, they were all significantly related to the power to 

detect the slope mean difference but not to the power to detect the second slope. Thus, having a 

turning point located at the second measurement point resulted in slight decreases in the power to 

detect differences between two slopes whereas increases in the correlation between the slopes resulted 

in increases in the power to detect the slope mean difference. Our results showed that relatively low 

sample sizes were required to achieve a satisfactory .80 level in power when the objective was only to 

detect whether the second slope was significant. This could be a reasonable objective of studies using 

PWL simply to model distinct trajectories (including different sets of predictors and outcomes) before 

and after some transition point. More precisely, our results show that n = 30-50 is sufficient to detect a 

large S2 with power levels over .80 whereas n = 200 is required to detect a smaller slope. However, 

researchers may not only be interested in modeling distinct, yet interrelated, developmental processes. 
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Rather, they may also want to test whether the level of growth significantly change before and after 

the turning point. Our results show that larger sample sizes are required to achieve satisfactory power 

in this context and that researchers would do well to a priori define the size of the effect they want to 

detect. More precisely, sample sizes of n = 1500-2000 are needed to detect a small slope mean 

difference with a power levels of .80, at least n = 200 to detect a moderate difference, and only n = 

30-50 to detect a large difference, unless only two measurement occasions are available before the 

turning point, in which case the required sample sizes rise to n = 2000-3000, n = 200-300, and n = 50.  

Although the position of the turning point only had a small effect on power, this factor had an 

a major influence on rates of nonconvergence, which were highly elevated in the condition where only 

two measurement points are available before the turning point. Thus, in the specific condition where 

only two measurement points are available before the turning point, sample sizes of 200  <  n <  300 

seem to be a more reasonable guideline for researchers who aim to avoid an unreasonable risk of 

nonconvergence. This result also suggest that experimental or clinical studies would do well to 

conduct clear preliminary analyses of the relative costs of having to increase the sample size, or the 

number of measurement occasions before the beginning of treatment.  

To our knowledge, this is the first LCM study to consider the variability of the slope in a 

power study. Our results clearly show the importance of this design factor in the determination of 

empirical power rates and the importance of incorporating this design factor in future simulations 

studies. Interestingly, this study also shows that some results based on linear LCM (e.g. Fan & Fan, 

2005) cannot fully generalize to nonlinear models defined by two linear slopes. Indeed, our results 

showed that characteristics of the full PWL model, such as the number of measurement points used to 

estimate the first slope factor do not have a substantial impact on the power to detect the second slope 

factor but influence more clearly the detection of the slope mean difference. However, we cannot 

expect our results to generalize to other forms of nonlinear relations. We also observed, as reported by 

Fan and Fan (2005) for linear LCM, that PWL estimation was associated with similarly high rates of 

nonconvergence. Thus, adding an additional slope to capture the nonlinear component of change did 

not result in an increased probability of encountering improper solutions in the estimation process. 

Whether this conclusion will hold for other nonlinear functional forms (exponential, logistic, etc.) that 
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do not involve adding an additional growth factor to the model remains to be seen in future studies.  

This study represents the first systematic investigation of the performance of PWL models 

based on simulated data. In order to be as comprehensive as possible, we strived to incorporate the 

broadest range of design conditions shown to be important to power determination within previous 

LCM studies, as well as multiple conditions likely to be relevant to the specific PWL context. This 

resulted in a very comprehensive study based on a total of 7524 design conditions, each based on 

10,000 properly converged samples. However, some conditions obviously had to be put aside to 

maintain this study within reasonable boundaries but should be more systematically investigated in 

the context of future studies which will hopefully be able to pick up a reduced range of design 

conditions and levels within conditions based on the results from the current study. These directions 

for future research include, multilevel PWL models were the turning point is an estimated parameter 

or the systematic comparisons of linear, latent basis, and PWL models for data simulated to 

correspond to either a linear or a PWL growth process. Similarly, the current study relied on complete 

data that met multivariate normality and homoscedasticity assumptions. However, real data tend to 

include missing data that may follow different mechanisms (e.g., missing at random), to be nonnormal 

and to be heteroscedastic. It is not known to what extent the result presented in this study will hold for 

these various conditions but these clearly represents areas where future research is required. Our 

expectation is that larger sample sizes may be required in these conditions. 

Endnotes 

1 Power is known to be influenced by the magnitude of the effect to be detected so that the magnitude 

of 
2Sµ and 

1 2S Sµ µ−  reflects one of the critical element to consider in this study. However, another 

indicator of the magnitude of the effect associated with the full LCM model (less relevant here to the 

detection of a specific parameter) is the R2 of the repeated measures. R2 values are a function of the 

time score, the variances and covariances of the growth factors and the variances of the residuals. 

More precisely, R2 values of the PWL model can be calculated using the following formula: 

 1 2 1 2 1 2

1 2 1 2 1 2

2 2
1 2 1 2 1 22

t 2 2
1 2 1 2 1 2

2 2 2
R  (y )= ,

2 2 2
I t S t S t IS t IS t t S S

I t S t S t IS t IS t t S S t

φ λ φ λ φ λ φ λ φ λ λ φ
φ λ φ λ φ λ φ λ φ λ λ φ θ

+ + + + +

+ + + + + +
 

where yt is the outcome at time t, λ1t is the time score for S1, λ2t is the time score for S2, Iφ is the inter-
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individual variance of I, 
1Sφ is the inter-individual variance of S1, 

2Sφ is the inter-individual variance of 

S2, 
1ISφ is the covariance between I and S1, 

2ISφ is the covariance between the I and S2, 
1 2S Sφ is the 

covariance between S1 and S2, and tθ is the time specific residual variance. Thus, R² is essentially 

composed by two terms: 
1 2 1 2 1 2

2 2
1 2 1 2 1 22 2 2I t S t S t IS t IS t t S Sφ λ φ λ φ λ φ λ φ λ λ φ+ + + + +  and tθ . The first 

term is strictly increasing over time given that all growth factors variances and covariances are greater 

than zero in this study. The second term is constant due to the homoscedastic assumption ( tθ θ= ) of 

this study. As a result the R² strictly increases over time. Based on this formula, it is clear that the 

specific R² values change across design conditions under the influence of multiple design conditions, 

making it complex to report specific values associated with each of the time points within each of the 

7524 design conditions. Overall, R² values range from .5 for the first time point to .99 for the tenth 

time point. This increase over time is reasonable as more time point usually provide more precision in 

the estimation of the underlying trajectories. However, the higher values observed at later time points 

might have resulted in slightly inflated power estimates.  

2 In order to test the statistical significance of 
1 2S Sµ µ− , we relied on a Wald test of statistical 

significance. Alternatively, Likelihood ratio tests (LRT), which are well suited for situations where 

the normality assumption is met and multiple parameters are estimated, could also have been used. 

The Wald test is routinely provided by most software making it simpler to use than the comparison of 

models based on LRTs. For this reason, the Wald test is more frequently used in practice. However, 

the squared version of the Wald test and the Likelihood ratio test are asymptotically equivalent and 

follow a chi-square distribution of one degree of freedom (Bollen, 1989; DasGupta, 2008). These two 

test should thus give similar results in most situations. In fact, small differences may potentially be 

expected when the asymptotic equivalence between the Wald and the Likelihood ratio test no longer 

hold, such as in small sample sizes. The specific conditions where this equivalence breaks down 

should clearly be more systematically investigated in the context of future studies.  
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Table. Main results regarding the effects of the design factors on the Type I error rates, empirical 

power rates and rates of nonvergence. 

Design factor Parametric ANOVA  Non-Parametric Kruskal-Wallis 
 F (df) p χ²(df) p 
Type I error rate (µS2)     
Slope Variance F(2, 1878) = 3.114 .045 χ²(2) = 7.202 .027 
Sample Size F(10, 1870) = 15.681 .000 χ²(10) = 594.931 .000 
Number of measurement points F(2, 1878) = 21.988 .000 χ²(2) = 153.327 .000 
Position of the turning point F(2, 1878) = .796 .451 χ²(2) = 5.296 .071 
Size of Corr(I, S2) F(3, 1877) = .589 .622 χ²(3) = .351 .950 
Size of Corr(S1, S2) F(3, 1877) = 1.72 .161 χ²(3) = 4.91 .179 
Type 1 error rate (µS1 - µS2)     
Slope Variance F(2, 1878) = 3.946 .019 χ²(2) = 10.149 .006 
Sample Size F(10, 1870) = 83.575 .000 χ²(10) = 481.561 .000 
Number of measurement points F(2, 1878) = 90.239 .000 χ²(2) = 170.053 .000 
Position of the turning point F(2, 1878) = .407 .666 χ²(2) = .505 .777 
Size of Corr(I, S2) F(3, 1877) = 2.481 .059 χ²(3) = 7.105 .069 
Size of Corr(S1, S2) F(3, 1877) = 2.903 .034 χ²(3) = 8.248 .041 
Power to detect µS2     
Slope Mean F(1, 3758) = 725.69 .000 χ²(1) = 1034.249 .000 
Slope Variance F(2, 3757) = 113.788 .000 χ²(2) = 147.455 .000 
Sample Size F(10, 3749) = 151.893 .000 χ²(10) = 957.255 .000 
Number of measurement points F(2, 3757) = 1.599 .202 χ²(2) = 4.298 .117 
Position of the turning point F(2, 3757) = .114 .892 χ²(2) = .268 .875 
Size of Corr(I, S2) F(3, 3756) = .005 1 χ²(3) = .119 .989 
Size of Corr(S1, S2) F(3, 3756) = .001 1 χ²(3) = .109 .991 
Power to detect µS1 - µS2     
Slope Mean F(2, 5640) = 2356.822 .000 χ²(2) = 2943.542 .000 
Slope Variance F(2, 5640) = 25.878 .000 χ²(2) = 80.528 .000 
Sample Size F(10, 5632) = 221.481 .000 χ²(10) = 1680.686 .000 
Number of measurement points F(2, 5640) = 4.972 .007 χ²(2) = 15.333 .000 
Position of the turning point F(2, 5640) = 8.396 .000 χ²(2) = 20.311 .000 
Size of Corr(I, S2) F(3, 5639) = 1.024 .381 χ²(3) = 4.63 .201 
Size of Corr(S1, S2) F(3, 5639) = 8.457 .000 χ²(3) = 39.684 .000 
Rates of nonconvergence     
Slope Mean F(3, 7520) = 0 1 χ²(2) = 0 1 
Slope Variance F(2, 7521) = 6.081 .002 χ²(2) = 5.582 .061 

Sample Size 
F(10, 7513) = 
3083.358 

.000 χ²(10) = 6461.699 .000 

Number of measurement points F(2, 7521) = 23.902 .000 χ²(2) = 15.335 .000 
Position of the turning point F(2, 7521) = 175.893 .000 χ²(2) = 223.87 .000 
Size of Corr(I, S2) F(3, 7520) = 7.937 .000 χ²(3) = 8.588 .035 
Size of Corr(S1, S2) F(3, 7520) = 28.187 .000 χ²(3) = 69.258 .000 
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Figure 1. Graphical Presentation of a Piecewise LCM with a Turning Point at 3 measurement 

occasions.  
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Figure 2. Illustration of the data generation conditions for the zero, moderately small, and large 

growth rates for the second slope of the PWL-LCM with a Turning Point at 3 measurement occasions.
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Figure 3. Empirical Power Curves to Detect a S2 Mean of .11, for a Turning Point at Time 3 with Corr(I,S1) = 0 and Corr(S1,S2) = 0. 
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Figure 4. Empirical Power Curves to Detect a Mean Difference of .05, for a Turning Point at Time 3 with Corr(I,S1) = 0 and Corr(S1,S2) = 0.  
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Figure 5. Empirical Power Curves to Detect a Mean Difference of .16, for a Turning Point at Time 3 with Corr(I,S1) = 0 and Corr(S1,S2) = 0.  
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Figure 6. Empirical Power Curves to Detect a Mean Difference of -.39, for a Turning Point at Time 3 with Corr(I,S1) = 0 and Corr(S1,S2) = 0.  


