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The Distance from the Incenter to the Euler Line
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Abstract. It is well known that the incenter of a triangle lies on thddfudine

if and only if the triangle is isosceles. A natural questionask is how far

the incenter can be from the Euler line. We find least uppentsuacross all

triangles, for that distance relative to several scalesos&€hhounds are found
relative to the semi-perimeter of the triangle, the lengthhe Euler line and

the circumradius, as well as the length of the longest sidetlam length of the

longest median.

1. Introduction

A quiet thread of interest in the relationship of the incemtethe Euler line has
persisted to this day. Given a triangle, the Euler line jahes circumcenter),
to the orthocenterfd. The centroid,G, trisects this line (being closer 10) and
the center of the nine-point circléy, bisects it. It is known that the incentdr,
of a triangle lies on the Euler line if and only if the trianggeisosceles (although
proofs of this fact are thin on the ground). But you can't jtisbose any point, on
or off the Euler line, to be the incenter of a triangle. Thent®iyou can choose are
known, as will be seen. An obvious question asks how far cainitenter be from
the Euler line. For isosceles triangles the distandg i€learly this question can
only be answered relative to some scale, we will considesetlscales: the length
of the Euler line £, the circumradiusR, and the semiperimetet, Along the way
we will see that the answer for the semiperimeter also gigeb& answer relative
to the longest sidey, and the longest median, To complete the list of lengths,
let d be the distance of the incenter from the Euler line.

Time spent playing with triangles using any reasonable agerpgeometry
package will convince you that the following are reasonablajectures.

a1 d_ 1 g 21
E— 3 R~ 2 s 3
Maybe with strict inequalities, but then again the limitgitibe attained.

A large collection of relationships between the centers tfamgle is known,

for example, ifR is the radius of the circumcircle andthe radius of the incircle,
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then we have
OI* = R(R-2r)
IN = %(R o)

Before moving on, it is worth noting that the second of thevabgives an imme-
diate upper bound for the distance relative to the circumngadAs the inradius of
a non-degenerate triangle must be positive we hiave IN = £ —» < £ and

hence
d

a _1
R 2
2. Relativeto the Euler line

The relationships given above, and others, can be used o @tz for any
triangle the incenter], must lie within theorthocentroidal circlepunctured at the
center of the nine-point circlgy, namely, the disk with diamet&r H except for
the circumference and the poiit.

Figure 1

In 1984 Guinand [1] showed that every such point gives risetttangle which
has the nominated points as its centers. Guinand showd dt+ p, IN = o
andOH = « then the cosines of the angles of the triangle we seek arestbs of
the following cubic.

(©) 3y 3 (402 1) 2 4 3 2k202 + 80t 402 1 + 1 [(4K202 1
c)=c’+-=-| — — c+--——+— - — c+— — .
b 2 \ 3p2 4 3pt 3pt  p? 8 ot

Stern [2] approached the problem using complex numbers enwides a sim-
pler derivation of a cubic, and explicitly demonstratest tine triangle found is
unique. His approach also provided the vertices direc;aanplex numbers.

Consideration of the orthocentroidal circle provides theveer to our question
relative to&, the length of the Euler line. The incenter must lie strictlithin
the orthocentroidal circle which has radius one third tmgtk of the Euler line.
Guinand has proved that all such points, exd€ptead to a suitable triangle. Thus
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the least upper bound, over all non-degenerate triangieheaatio% is % with
triangles approaching this upper-bound being defined bingamcenters close to
the points on circumference of the orthocentroidal cireieacradius perpendicu-
lar to the Euler line. For any given non-degenerate triamgdeobtain the strict
inequality ¢ < .

Consideration of Figure 2 gives us more information. Taking = 3 as our
scale. For triangles witli close to the limit point above, the anglé’H is close
to 7. Moreover, withI near that point, a calculation using the inferred values of

OI ~+/5andIN ~ @ shows that the circumradius will be close®, and the
inradius will be close to 0.

We observed above thatVv < %. This distance only becomes relevant for us if
IN is perpendicular to the Euler line. Consideration of théacentroidal circle
again allows us to see that this may happen, with the al@lé being close td;.

In this case the circumradius will be close3.

Figure 2

Remark.It is easy to see that the last case also gives the least upped lof the
angle/OH asg.

3. Rdlativetothetriangle

We now wish to find the maximal distance relative to the dinars of the
triangle itself. The relevant dimensions will be the lengththe longest median;,
the length of the longest side, and the semiperimetey, Itis clearthat < i < s
(see Lemma 4 below).

The following are well-known, and show that the incenter eswtroid lie within
the medial triangle, the triangle formed by the three midimoof the sides.

Lemma 1. The incenter/, lies in the medial triangle.
Lemma 2. The centroid of triangled BC is the centroid of the medial triangle.

Lemma 3. The distance from the incenter to the centroid is less thantbind the
length of the longest median of the triangle.



234 W. N. Franzsen

Proof. We have just shown that both the incenter and centroid lidérthe medial
triangle. Therefore the distance from the incenter to theroa is less than the
largest distance from the centroid to a vertex of the medehgle. (Consider the
circle centered ab passing through the most distant vertex.)

Now the distance of the centroid from the vertices of the mlddiangle is, by
definition, the distance from the centroid to the mid-poimitshe side of triangle
ABC. Those distances are equal to one third the lengths of theamedand the
result follows. O

Lemmad4. The length of a median is less thanHencey < p < s.

Proof. Consider the median from. If we rotate the triangle through abouti 4,
the mid-point of the side opposité, we obtain the parallelograd BDC. The
diagonalAD has twice the lengttdM 4. As A, B and D form a non-degenerate
triangle we have

2AMy 4 = AD < AB+ BD = AB + AC < 2y,

wherey is the length of the longest side. Thus the meddavi4 < p. This is also
true for the other two medians. Thus< u. O

Proposition 5. The distanced, from the incenter to the Euler line satisfies
d d d 1

sSpSvSw
wherev is the length of the longest medianjs the length of the longest side and
s is the semi-perimeter of the triangle.

Proof. As the centroid lies on the Euler line, the distance from tieenter to the
Euler line is at most the distance from the incenter to théroeh By Lemma 3,
this distance is one third the length of the longest mediaut, By Lemma 4, the
length of each median is less than< s, and the result follows. g

4, Inthelimit

As the expressiong, 4 and ¢ are dimensionless we may choose our scale as
suits us best. Consider the triangle with verti¢e), (1,0) and(e,d), wheree
and o are greater than but approximately equabDtoThe following information
may be easily checked.

The coordinates of the orthocenter are

2
E—€
H — .
(=)
The coordinates of the circumcenter are
0 37 2 +e?2—¢ .
2 20

The Euler line has equation
low : (0% +3(1 —e)e) v + (1 — 2e)0y + ¢ (0* + 2 — 1) =0.
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If we letp = 25 = V62 + e2 4 1/02 + (1 — €)? + 1, then the coordinates of the

incenter are
I V24 e2+e d
p ‘p)’

We may now write down the value @f being the perpendicular distance from
Itolpy.

‘(—52 +3(1 —e)e) (\/m—k E) + (1 —2¢)0% + pe (6% + 2 — 1)‘
(=8 +3(1 = £)e)” + (1 — 2% '

Suppose we lef = 2, then the expression for the ral%ois

2e ‘(—53 —3e+3)(Vel + 2 +¢e) +e(e? —23) +p(e* — €2 — 1)‘

pey/(—e3 —3(e — 1))2 + (e — 262)2
We cancel the common factor efand take the limit as — 0. Noting thatp — 2

we see that the numerator approaches 4 while the denomaggtonaches 12, and
we have proved the following.

d =

Theorem 6. If d is the distance from the incenter to the Euler lisethe semi-
perimeter,i. the length of the longest side amdhe length of the longest median,
then the least upper bound &f and hence}% and £, over all non-degenerate

. . 1
triangles iss.

Remark.In those cases where the distance ratio is close to the maxite line
IG is nearly perpendicular to the Euler line. Thus the angl&{ will be close
to 5. In these cases the Euler line is extremely large comparttiangle.

Similar calculations can be carried out for the ratg)and }%. In those cases
we take the pointe, §) to be a point on the circle throudlf, 0) and (1,0) with

radius@, or @ respectively (remember that the values,6f andy/3 met earlier
were relative to the length of the Euler line, not the lendth side).

5. Demonstrating the limits

We now have enough information to assist us in constructiagrdms that will
demonstrate these limits using a suitable computer gegrpatkage.

Taking the case of triangles with the ratﬁ)approaching%. Let AB be a line
segment and define its length to be 1. Etbe the point ond B one third of the
way from A to B. Construct the ling='T" such that/BG'T = % and letO be
the point where this line meets the perpendicular bisedtot 8. Draw the arc
AB centered av and letC be a point on that arc. Constructing the Euler line
and incenter of triangled BC' will demonstrate that the rati% approache% as
C approachesi. This construction is explained if you note ti@Gt is the limiting
position of the centroid(z, asC approaches! (see Figure 3).
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Figure 3.

A similar construction, except witH BG'T = 7 will give a demonstration that
% approache% asC' approachesi.

Something different is required to demonstrate gmpproache%. GivenAB
above, choose a poidt’ betweenAd and B and let the lengttdC’ = ¢, with 0 <
e < 1. Construct the perpendicular @t and find the poinC on the perpendicular
with CC’' = 2. Constructing the Euler line and incenter of this triangld w
demonstrate that the ratgaapproache% asC approachesi.
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