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THESIS ABSTRACT 

Physical science (or physics) is known to be one of the least popular school 

curriculum domains, mainly because of its complexity. When students encounter 

seemingly insurmountable difficulties when learning something, they lose the motivation 

to continue. It has been suggested that both the cognitive (e.g., students’ conceptual 

understanding and achievement) and non-cognitive (e.g., psychological aspects such as 

academic self-concept and motivation) factors of learning are essential for helping students 

achieve their optimal best in a curriculum domain. However, there has not been much 

research, if any, which uses a dual approach to investigate both aspects of science learning. 

Most research focused on either the cognitive or non-cognitive aspect. Research on 

cognitive aspects of learning suggests that element interactivity is a useful construct with 

which to examine students’ cognitive processes and the complexity of learning materials. 

However, there has been no illustration on how an analysis of interacting elements in 

science learning tasks may improve learning. Studies on the effects of reducing element 

interactivity on students’ achievement and motivation are also scarce. Research on non-

cognitive aspects of learning suggests that motivation is necessary to sustain students’ 

engagement in learning. However, if the complexity of learning tasks is so high that 

students experience repeated failures, their motivation is not sustained. Therefore, both 

cognitive and non-cognitive factors play a crucial role in students’ learning and both must 

be present to ensure an optimal learning environment.   

The overarching aim of this thesis is to investigate the cognitive (i.e., students’ 

achievement and cognitive processes in terms of element interactivity) and non-cognitive 

aspects (i.e., self-concept and other motivational factors) of students’ learning of science. 

The thesis includes five studies. The first study showed that the five main findings from 
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past self-concept research were applicable to the Grade 7 students from Singapore selected 

for the study. Students’ sense of competence in a curriculum domain enhanced their future 

achievement in that domain only, except for physics and math, which showed 

interrelatedness (i.e., the enhancement was transferable from one domain to the other).  

The findings showed a strong interplay between academic self-concept and achievement 

and highlighted the important role that academic self-concept plays in determining 

students’ learning outcomes. Therefore, strategies to enhance students’ self-concept should 

be implemented in schools.  

The results of the second study showed strong positive correlations between 

students’ achievement and their motivation within a school year. Students’ Grade 6 (final 

primary school year) achievement did not strongly contribute to their motivation in Grade 

7, indicating the importance of providing an optimal learning environment in Grade 7 for a 

positive start to their secondary school education.  

The third study showed how the interactions between the elements (i.e., element 

interactivity) in problem solving tasks reflect their level of complexity and how the 

number of operational lines that students used to solve problems could indicate their level 

of expertise in problem solving in that domain. This study highlighted the role of element 

interactivity as a planning tool for learning tasks and how teachers may use it to gain 

insights into students’ cognitive processes.  

The fourth study involved an intervention, which reduced element interactivity 

during science instruction, and the results revealed that students’ achievement improved, 

and their science self-concept was maintained. The results and implications of the first four 

studies were used to design a dual-approach instruction to facilitate both cognitive and 

non-cognitive aspects of students’ learning in the fifth and final study.  
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The results of the final intervention study indicated that the dual-approach 

instruction was beneficial. The experimental group of students outperformed the 

comparison group in both cognitive and non-cognitive factors. Results from multiple 

regression analyses revealed that those who experienced the intervention not only had 

higher achievement than those in the comparison group in the complex problem tasks, but 

also had higher motivation (i.e., self-regulation, task goal, inquiry, and educational and 

career aspirations) and higher academic self-concept (i.e., sense of competence). 

This thesis demonstrates that there are strong associations and a significant 

interplay between students’ achievement and motivation levels (i.e., cognitive and non-

cognitive aspects of learning). The analysis of learning tasks and instruction in terms of 

element interactivity enables the scaffolding of complex learning tasks to suit students’ 

cognitive levels, leading to higher achievement. Higher achievement contributes to higher 

motivation levels, including students’ academic self-concept. When learning environments 

attend to basic psychological needs (i.e., a sense of competence, autonomy, and 

relatedness), students’ motivation is enhanced and when motivated students experience 

learning that is within their ability and cognitive load capacities, their self-beliefs and 

motivation in the learning domain are sustained. Attention to both cognitive and non-

cognitive factors in learning situations maximizes students’ learning potential and should 

therefore be strongly considered by educators and curriculum planners. 
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CHAPTER 1: INTRODUCTION AND OVERVIEW 

1.1. Background 

Science education, especially in physics, is in crisis. In recent years, the number of 

students enrolled in science-related courses at the tertiary level has entered a spiral of decline in 

many countries around the world (National Science Board, 2014, 2015). This has led to a 

recursive shortage of science-related professionals such as qualified science teachers, scientists 

(Office of the Chief Scientist, 2012) as well as scientifically literate citizens. Physics 

knowledge and understanding lay the foundations for technology and engineering and therefore 

underpin a knowledge-based economy with engagement in science-related issues, global 

competitiveness, and national security (Oon & Subramaniam, 2010). It is therefore crucial to 

research and understand why school students do not choose to study physics and to hopefully 

reverse the trend to an upward cycle.  

Similar to other science instruction, physics instruction in school generally focuses on 

problem solving. Thus, the main aim of teachers is to have students: (1) acquire information, 

concepts, and knowledge (conceptual) and (2) develop problem-solving skills (procedural). 

However, more than any other subject in the school curriculum, students describe physics as a 

“difficult subject with a high workload” (Angell, Guttersrud, Henriksen, & Isnes, 2004, p. 6). 

Current practices in physics classes focus on teacher-centered lectures to deliver the conceptual 

information, and drill-and-practice sessions to train students to follow procedures to solve 

physics problems. According to Wieman (2007), the problems that arise with these methods 

are that students: (1) understand only 10% of what was delivered in the lectures, (2) are unable 

to transfer (apply) their learning to solve related physics problems, and (3) even when they are 

able to solve physics problems, they may not actually understand the conceptual underpinnings 

of their problem solving procedures. 
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Treagust and Chandrasegaran (2007) emphasize that the success of science programs at 

the university level is dependent on the foundational improvements in science education in 

primary and secondary schools. Hence, improvements of science lessons at primary and 

secondary schools are critical. There is an urgent need to move away from the traditional 

approach of instruction in the science classrooms of young students in schools which are 

deductive and teacher-led (Andres, Steffen, & Ben, 2010). This traditional approach has been 

criticized for being ineffective in the teaching of science (Wieman, 2007), in terms of 

conceptual understanding and motivation, and has been known to be ineffective as early as the 

beginning of the 20th century. For example, Armstrong (1910) argued that science cannot be 

taught by means of lectures and demonstrations alone, where scientific ideas were transmitted 

as a series of unchanging facts from teachers to students, with students expected to memorize 

them. Instead, science should be presented to students in ways that would kindle their curiosity, 

encourage them to use their eyes and hands to discover knowledge by their own efforts, and 

stimulate their thinking (Armstrong, 1910).  

There have been numerous research and intervention studies conducted with an attempt 

to solve the issue of educators using ineffective traditional pedagogies (e.g., Hardy, Jonen, 

Möller, & Stern, 2006; Kearney, 2016). However, most of these studies are segmented and 

either focus on the cognitive (i.e., achievement and learning processes) or the non-cognitive 

aspect (i.e., psychological factors such as motivation) of learning. To improve science 

education in secondary schools, there is a need for educators to incorporate both the cognitive 

and non-cognitive aspects where their strong interplay results in students’ optimal learning 

(Forbes, Kadir, & Yeung, 2017; Kuppan, Munirah, Foong, & Yeung, 2010; Phan, Ngu, & 

Yeung, 2016). In this thesis, both the cognitive and non-cognitive aspects of science learning 

were addressed, their relations investigated, and the findings used to design an intervention 

addressing both cognitive and non-cognitive outcomes, which were then were measured. 



CHAPTER 1: Introduction and Overview 

 

6 

 

1.2. Choice of Participants 

Early adolescence is a vulnerable period when students go through vast changes in 

terms of their motivational attitudes towards learning as well as their achievement beliefs 

(Eccles & Midgley, 1989). For some of these students, the changes they experience as they 

leave their childhood (e.g., increased self-reflection, self-identity, self-concept, autonomy) lead 

to new academic goals, interests, attitudes towards learning such as increased self-regulated 

learning and a commitment to school learning (Goodenow, 1993). However, for many students 

in this age group, a decline in academic self-concept and autonomous motivation is salient 

(Ryan & Patrick, 2001). These students may have self-doubts about their academic abilities, 

are not committed to completing their schoolwork, question the value of learning, and do not 

put in much effort in their schoolwork and academic learning in general (Eccles, Wigfield, 

Harold, & Blumenfeld, 1993; Schunk, Pintrich, & Meece, 2008). “Autonomous motivation 

comprises both intrinsic motivation and the types of extrinsic motivation in which students 

have identified with an activity’s value and ideally will have integrated it into their sense of 

self” (Deci & Ryan, 2008, p. 182). Autonomous motivation predicts many important outcomes 

such as psychological health and well-being, effective performance, creative problem solving, 

deep or conceptual learning, and greater long-term persistence, for example, maintained change 

toward healthier behaviors (Ryan & Deci, 2017). When students are autonomously motivated, 

“they experience volition, or a self-endorsement of their actions” (Deci & Ryan, 2008, p. 182). 

Therefore, it is important to study the autonomous motivation of students, so that an 

intervention could be designed and administered to steer student learning experiences and 

motivation in a positive direction.  

The critical components of science education include the learning processes, which then 

contribute to student achievement and form the cognitive aspect, and motivational and other 

psychosocial factors, which form the non-cognitive aspect. If young students in schools have 



CHAPTER 1: Introduction and Overview 

 

7 

 

positive learning experience with science – in both cognitive and non-cognitive aspects – they 

may be more likely to enroll in science-related courses in their senior secondary school years, 

and even beyond.  Hence, for successful science education, lessons need to include these 

critical components (i.e., cognitive and non-cognitive) in parallel to each other. Since my 

research is focusing on the physics component of science, the student sample was selected 

from a school in Singapore, which offered Physics as a ‘stand-alone’ subject in the first year of 

secondary school (Grade 7 or Secondary 1). 

1.3. Thesis Aim 

The overarching aim of this thesis was to further the understanding of the relations 

between the cognitive and non-cognitive aspects of science learning by examining students’ 

learning processes, achievement, and their motivation and self-concept towards science 

learning. In order to meet this aim, a series of five studies was conducted. The studies included 

exploration of the relations between cognitive and motivational aspects of learning with the 

findings contributing to the design and assessment of an instruction intervention that addressed 

both aspects of learning. The aim was not to create a ‘bull’s eye’ shot to solve all problems 

related to science education, but to identify a network of cognitive and motivational 

determinants of science education and intervention practices in dealing with both the cognitive 

and non-cognitive issues of science education. The ultimate goal is to enlighten science to 

become a manageable, interesting, and popular domain.  

1.4. Studies within the Thesis 

The thesis includes five studies, each contributing to the overarching research aim of 

exploring the relations between the cognitive and non-cognitive aspects of science learning. 

Study 1 was a review of four decades of research on academic self-concept, a well-documented 

determinant of academic success. The study investigated whether the five main findings from 

past self-concept research were applicable to the sample of Secondary 1 (i.e., Grade 7) students 
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from Singapore selected for the study, and to study any associations between students’ 

achievement and their academic self-concept. In Study 2, associations between students’ 

achievement and motivation were investigated using a wider range of motivational factors 

(e.g., self-efficacy, engagement, and educational aspiration). Study 3 explored the cognitive 

processes that contributed to student achievement. It focused on the role of element 

interactivity as a construct for (1) the analysis of science learning tasks, (2) for exploring 

students’ cognitive processes, and (3) assessing students’ expertise in the tasks. In Study 4, the 

effects of reducing element interactivity during science instruction on students’ science 

achievement and science self-concept were investigated. Finally, the findings and implications 

of research from studies 1 to 4 were used to guide the design and implementation of a dual-

approach instruction (i.e., sequencing element interactivity and enhancing motivation) in 

Study 5. In the dual-approach instruction, the ‘isolated elements strategy’ from cognitive load 

theory (Ayres, 2013) was used to sequence the element interactivity of the science materials. 

The learning environment was designed to nurture students’ motivation by adding features 

which could fulfil students’ basic psychological needs (i.e., sense of relatedness, autonomy, 

and competence), as suggested by self-determination theory (Ryan & Deci, 2017). The effects 

of the intervention on students’ cognitive (i.e., performance in easy and complex tasks), and 

non-cognitive (motivation and academic self-concept) aspects of learning were examined.  

1.5. Thesis Structure 

This thesis is structured in the form of publishable papers. Due to specific requirements 

of publishers, the spelling and formatting may vary across chapters. Where there is co-

authorship, the word “we” is used to reflect collaborative effort. This chapter (Chapter 1) 

provides the background to the research journey and explains how the five studies presented in 

this thesis contribute to the overarching research aim. The literature review (Chapter 2) 

presents the theoretical background for the five studies and positions the studies within their 
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broader research context. Chapter 2 comprises four sections: Sections A to D. Sections A and 

B present two literature reviews which have been published as book chapters. Section C 

presents a review of literature which has not been discussed in Sections A and B. Section D 

presents the research questions and hypotheses guiding the five studies. Chapters 3 to 7 present 

the five studies, reported in the form of journal articles. Chapters 2 to 7 begin with a preface 

explaining the chapter’s rationale and its role in answering the overarching research questions. 

Chapter 8 concludes this thesis with a general discussion of implications for future research 

and educational practice. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Preface 

This literature review sets the overall context for this thesis by explaining the cognitive and non-

cognitive aspects in the field of science education (focusing on the branch of physics) and 

identifies the gaps in understanding. It provides an overview of the recent developments and 

syntheses of the studies in cognitive load theory and self-concept theory, as well as other theories 

of motivation such as self-determination theory, and science education in general. This literature 

review chapter has four main sections. Section A focuses on the cognitive aspects of learning: 

the learning processes (i.e., human cognitive architecture), and element interactivity as proposed 

by cognitive load theory. Section B focuses on the non-cognitive aspects of learning: students’ 

academic self-concept. Sections A and B have been published as book chapters by Nova and 

Springer, respectively. Section C provides a juxtaposition of the cognitive and non-cognitive 

aspects of learning, highlighting relevant literature not covered in Section A and Section B. 

Section D provides an overview of this thesis, including specific research objectives for each of 

the five studies, an outline of the remaining chapters, and the overall significance of this research. 
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Section A:                                                                                                                         

The Cognitive Aspects of Learning –                                                             

Human Cognitive Processes and Element Interactivity 

 

 

“Without the knowledge of human cognitive processes, instructional design is blind” 

(Sweller, Ayres, & Kalyuga, 2011, p. v) 

 

 

Note. This section has been published as a book chapter in the publication Progress in 

Education, edited by Roberta V. Nata. Permission to present the published version of this study 

in this thesis has been obtained from the publisher – Nova Science Publishers, Inc.   

 

 

 

Kadir, M. S., Ngu, B. H., & Yeung, A. S. (2015). Element interactivity in secondary school 

mathematics and science education. In R. V. Nata (Ed.), Progress in education (Vol. 34, pp. 

71-98). New York, NY: Nova. 

 

 

 

 

 

 



CHAPTER 2: Literature Review 

 

12 

 

2.A. Element Interactivity in Secondary School Mathematics and 

Science Education 

 

2.A.1. Preface 

The cognitive issue of physics instruction is its complex nature (van Merriënboer & Sweller, 

2005). Clark and Elen (2006) suggest that the complexity of a learning task is related to the 

degree to which its mastery requires the learner to consciously and deliberately process numerous 

elements which interact in multiple ways. This is particularly so if the multiple elements or 

relationships are changing over time as is frequently the case in physics. The perceived 

complexity is increased when the learners are novices, so physics is generally considered to be 

very challenging to learn for secondary school students (van Merriënboer & Sweller, 2005), since 

it is newly introduced to them at that stage (i.e., Grade 7). Before effective instructional methods 

are designed to overcome these issues, knowledge about the human cognitive processes is 

necessary. When educators know how the brain works and understand the constraints and 

limitations of the brain and the learning processes, the instruction they design will be more 

effective in dealing with the cognitive challenges that students face.  Section A of this literature 

review elaborates on the cognitive processes involved in learning and problem solving. Since 

physics instruction involves applying science conceptual knowledge in the form of equations 

(which forms part of the procedural knowledge to solve physics problems), there is also a 

component that looks into mathematical problem solving using equations.  
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2.A.2. Abstract 

Learning mathematics and science entails learning the relations among multiple interacting 

elements, especially when solving problems. Assimilating multiple interacting elements 

simultaneously in the limited working memory capacity would incur cognitive load. Unless 

the instructions provide a mechanism to manage the high cognitive load involved, learning 

effectiveness may be compromised. Researchers have investigated instructional efficiency 

across diverse domains from the perspective of cognitive load theory. Progress in 

educational theory has enabled a better understanding of three types of cognitive load that 

students experience during the learning process: intrinsic, extraneous, and germane 

cognitive load. Processing the intrinsic nature of a task constitutes intrinsic cognitive load 

(e.g., complexity of elements). Sub-optimal instruction requiring unnecessary processing of 

elements constitutes extraneous cognitive load. Investing mental effort in multiple practices 

constitutes germane cognitive load. Recent advance in cognitive load theory highlights 

element interactivity (i.e., the interaction among elements to be processed) as a common 

thread among different types of cognitive load. However, despite progress in cognitive load 

research, little is known about the effects of element interactivity in secondary school 

mathematics and science education. Using element interactivity as a point of reference, this 

article reviews the design features of different approaches to teaching linear equations in 

mathematics and the topic of density in science. Evidence seems to point to the practical 

benefit of using instructional approaches that address the issue of multiple elements 

interacting with each other to facilitate learning. As such, the conceptualization of cognitive 

load in terms of element interactivity will bring further progress in the research on 

cognitive load in mathematics and science learning. 
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2.A.3. Introduction 

The purpose of this chapter is to revisit the conceptualization of cognitive load in terms 

of element interactivity in mathematics and science learning in secondary schools. By defining 

and analyzing various types of cognitive loads (i.e., intrinsic, extraneous, and germane) in 

terms of element interactivity, it would be possible to analyze almost any learning material that 

may present a challenge to the learners. This approach will enable us to tailor instructions to 

suit students’ knowledge levels and progress in mathematics and science education to a new 

level.  

Many students perceive mathematics and science as difficult subjects to learn (Shen, 

2001, 2002, 2006; Shen & Pedulla, 2000), most probably due to the complex nature of the 

concepts involved. Complexity in the learning materials is primarily due to the need to 

simultaneously process multiple elements of information, creating a burden on the limited 

working memory. This issue is particularly salient in problem solving situations in 

mathematics and science education, where students need to concurrently manage both 

conceptual and procedural knowledge. By understanding the issues caused by the interaction of 

various elements in mathematics and science learning materials, educators will be in a better 

position to choose appropriate instructional designs and methods to help students learn 

mathematics and science more effectively.  

2.A.4. Cognitive Load as a Learning Issue 

When students engage in a cognitive task, such as mathematics and science problem 

solving, the information required to complete the task must first be processed through the 

working memory (WM) of the brain system (Baddeley, 1986, 1992, 1998). The WM, a 

cognitive structure where current mental activity takes place (Simon, 1974), is limited in its 

capacity and duration (Peterson & Peterson, 1959). Cognitive load arises when WM resources 

are used to engage in a mental activity (e.g., Paas, Renkl, & Sweller, 2003, 2004). Clark and 
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Elen (2006) suggest that the complexity of a learning task is related to the degree to which its 

mastery requires the learner to consciously and deliberately process numerous elements which 

interact in multiple ways. Processing interacting elements impose a cognitive load on the WM 

(Sweller, 1994). If the cognitive load involved in the mental processing of the element 

interactivity exceeds the capacity of the WM, some of the information will be lost and problem 

solving success will be hindered (Ayres, 2006; Paas & Ayres, 2014). Evidence points to 

cognitive load issues related to the interacting elements of conceptual and procedural 

knowledge in mathematics and science problem solving tasks, and they form the focus of the 

present chapter. 

2.A.5. Conceptual and Procedural Knowledge 

The literature on problem solving has illustrated the importance of the mastery of 

concepts and problem solving procedures, because conceptual knowledge makes it possible to 

effectively use procedural knowledge to solve problems (Glaser, 1984). Policy documents such 

as the National curriculum for science for England and Wales (DFE, 1995) and Environmental 

studies 5–14 for Scotland (SOED, 1993), also emphasize the integrated acquisition of 

conceptual and procedural knowledge. The simultaneous processing of conceptual and 

procedural knowledge creates issues in mental processing of information during mathematics 

and science problem solving, due to the limitations of the WM in dealing with such high 

cognitive load.  

As simply stated by Ryle (1976), conceptual knowledge is ‘knowing that’ and 

procedural knowledge is ‘knowing how’. Education researchers in mathematics and science 

have defined and explained these two types of knowledge further. In mathematics, conceptual 

knowledge is “an integrated and functional grasp of mathematical ideas” (Kilpatrick, Swafford, 

& Findell, 2001, p. 118) and procedural knowledge is the “ability to execute action sequences 

to solve problems, including the ability to adapt known procedures to novel problems” (Rittle-
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Johnson, & Star, 2007, p. 562). In Science, conceptual knowledge is “the factors and 

mechanisms which underpin key events” and procedural knowledge is “the controlled 

manipulation of factors, the prediction and observation of outcomes, and the utilization of 

observations to draw conclusions” (Howe, Tolmie, Duchak-Tanner, & Rattray, 2000, p. 362; 

also see DFE, 1995; SOED, 1993).  

In this chapter focusing on mathematics and science problem solving, we refer to 

conceptual knowledge as understanding the “meaning” behind the learning task and procedural 

knowledge as the ability to carry out the “steps” and “processes” to solve the problem in the 

task. When the interacting elements in problem solving are effectively managed, students will 

develop well-linked schemas and gain both conceptual and procedural knowledge which is 

flexible and generalizable to other similar problem situations.  

2.A.6. Cognitive Processes in Problem Solving 

An understanding of the cognitive processes that underlie mathematics and science 

problem solving is critical for learning more about how students deal with element interactivity 

that constitute cognitive load during problem solving (Carlson, Chandler, & Sweller, 2003; 

Chinnappan & Chandler, 2010). Figure 2.1 illustrates a model of human memory structures and 

the processing of information, more commonly known as the human cognitive architecture. 

This model identifies the main cognitive structures and processes of how students learn 

mathematics and science. It is based on the components of working memory (WM) advanced 

by Baddeley and Hitch (2000), which was illustrated by Chinnappan and Chandler (2010).  
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Figure 2.1. Human cognitive architecture. 

 

The model shows that sensory memory first registers the incoming visual and auditory 

signals and then the relevant information is processed within the WM. During mathematics and 

science instruction, when students pay attention to a problem solving task, the input from 

sensory memory becomes relevant. As students process the new mathematical and scientific 

information, the process imposes cognitive load on WM, which has limited capacity and 

duration. The cognitive load involved in the process can be categorized as intrinsic, extraneous, 

and germane (Sweller, Ayres, & Kalyuga, 2011). Basically, the interacting elements in the 

learning material will impose intrinsic cognitive load and the sub-optimal instruction will 

impose extraneous cognitive load on the WM. If the instruction is optimal, the extraneous 

cognitive load will be minimal and there will be enough WM resources to deal with the 

interacting elements in the learning material. The mathematical and scientific knowledge will 

then be effectively processed, encoded, and organized as schemas and stored in long-term 

memory (LTM). LTM has unlimited capacity (Landauer, 1986) and is able to store unlimited 
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schemas (Newell & Simon, 1972) such as mathematics and science concepts, theorems, and 

procedural rules. These schemas can be retrieved from LTM to interact with new elements in 

the WM to make sense of new incoming information to develop new mathematical and 

scientific concepts to be again stored in the LTM as new schemas (Figure 2.1). This cycle of 

schema construction and retrieval imposes germane cognitive load on WM and requires WM 

resources, but is essential for schema construction and retrieval, which facilitates learning. 

Successful learning is characterized by the automation of the retrieval of stored information for 

the acquisition of new knowledge, which will increase students’ mathematical and scientific 

conceptual knowledge base and expertise in problem solving procedures. The following 

segments explain the main components of the model in more detail.  

2.A.6.1. Working Memory 

Working memory (WM) refers to the brain system that is used during learning and 

completing cognitive tasks such as problem solving (Baddeley, 1986, 1992). WM functions as 

a thinking mechanism, processing the instructional information with its cognitive resources, 

within the limitations of its capacity and duration (Peterson & Peterson, 1959). Because of its 

limited capacity and duration, researchers have tried to find ways to address the limitations. 

One suggestion is to organize large amounts of discrete information elements into smaller 

“chunks” and to sequence the chunks in a meaningful way (Miller, 1956). Remembering 

information elements in chunks extends the information processing ability of WM (Gobet et 

al., 2001). For example, remembering a number with 9 elements like 123488888 as 2 chunks 

(i.e., chunk 1: four consecutive numbers starting with 1; followed by chunk 2: five repeated 

numbers of 8), instead of 9 separate digits, reduces the processing load on WM (Clark, 

Nguyen, & Sweller, 2006). In mathematics and science, when dealing with problems with 

many interacting elements, it has been estimated that only about two to four of these chunks 
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can be simultaneously processed by the WM (Cowan, 2001). This is because the interactions of 

the elements in these chunks would also use up limited WM resources.  

When instructional materials are successfully processed through WM, the information 

is stored in LTM in the form of schemas. Recent studies in cognitive load theory have 

indicated that the limitations of the WM may be the single most critical factor that needs to be 

considered when designing instruction (Jeung, Chandler, & Sweller, 1997; Mayer, 2001; 

Sweller, 1999, Sweller, van Merriënboer, & Paas, 1998; Tindall-Ford, Chandler, & Sweller, 

1997). This is because the failure to process necessary information effectively in WM leads to 

failed schema construction, which is detrimental to learning. 

2.A.6.2. Long-Term Memory 

While WM has limited capacity and duration, long-term memory (LTM) has unlimited 

capacity (Landauer, 1986) and is viewed as the central structure of human cognition. It is able 

to store a vast amount of knowledge that has been processed (Newell & Simon, 1972) by WM. 

The knowledge stored in LTM can be described as schemas that have been indexed and 

categorized for easy retrieval (Valcke, 2002) whenever WM is actively processing a task that is 

related to what has been stored in LTM. These schemas may be retrieved from LTM when 

required, to process with relevant new information in WM (Ericsson & Kintsch, 1995) to form 

new multi-dimensional mental webs of interconnected information (Chi, Glaser, & Rees, 1982; 

Gick & Holyoak, 1983), resulting in higher-level schemas related to the domain.  

2.A.6.3. Schemas 

Schemas are stored, organized, and interconnected knowledge that has been processed 

by the WM and transferred to LTM. A schema summarizes the common elements of related 

information, categorizes them and provides a generic characterization of the knowledge 

acquired (Anderson, Spiro, & Anderson, 1978). Because schemas in LTM are hierarchically 

organized, they allow us to categorize different problem states and decide upon the most 
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appropriate solution strategies (Paas, van Gog, & Sweller, 2010). That is, for solving 

mathematics and science problems, how different chunks of information are organized as 

schemas in LTM will determine the quality of students’ mathematics and science knowledge, 

which will influence the deployment of that knowledge during problem solving attempts 

(Chinnappan & Chandler, 2010).  

The interconnectedness of schemas plays a crucial role in making a student an expert in 

problem solving tasks. If knowledge is organized in schemas that allow the learner to 

categorize multiple interacting elements of information as a single element (Pawley, Ayres, 

Cooper, & Sweller, 2005), the burden on WM is much reduced when processing new 

information. Well-organized schemas enable the learner to retrieve relevant knowledge from 

LTM with less conscious effort (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). The 

increased automatic processing is a crucial factor in learning, as it removes the burden on WM, 

allowing cognitive resources to be directed to more important learning processes.  

A beginning learner (i.e., a novice) will initially construct simple, low-level schemas in 

the domain and store them in LTM. As more related materials are learned, the schema is 

recalled as a single element to facilitate the construction of more complex schemas by 

combining elements consisting of lower level schemas into higher-level schemas as the learner 

becomes more skilled (Paas et al., 2004). Research indicates that it is the existence of such 

domain-specific schemas that determines one’s problem solving expertise (Chi et al., 1982; 

Larkin, McDermott, Simon, & Simon, 1980). As complex problem solving involves a high 

level of element interactivity, recalling knowledge as schemas will reduce the level of element 

interactivity managed by WM at any one time, preventing the WM from being overloaded.  

Indeed, the success of the equation approach highlighting a two-part learning process 

for the percentage problems relies on the recall of the acquired lower-level schema (Ngu, 

Yeung, & Tobias, 2014). Consider a percentage problem: “Find the new cost of an iPod if the 
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advertised price of $250 is marked up by 12%”. Part 1 involves the review of pre-existing 

knowledge such as percentage quantity (i.e., $250 ×12%). Part 2 involves the sum of the 

original amount ($250) plus the percentage quantity ($250 ×12%), which is the solution. The 

recall of the lower-level schema of percentage quantity ($250 ×12%) in Part 1 reduces the 

degree of element interactivity in Part 2 because the learners can treat the percentage quantity 

as a single element.  

From an instructional design perspective, it follows that the goal of instruction should 

be to facilitate the construction, development and automation of schemas, so that complex 

schemas can be constructed to develop students’ expertise in the domain (Ericsson, 2006a). 

Automated schemas provide the structure for LTM and allow students to effortlessly process 

information through limited WM (Carlson et al., 2003), and thus optimizing learning. This is 

critical for problem solving transfer and applying learned knowledge in new contexts (Cooper 

& Sweller, 1987; Kotovsky, Hayes, & Simon, 1985). For example, Kirschner (2002) revealed 

that mathematical knowledge bases that are effectively organized in the form of schemas will 

facilitate more effective application of conceptual knowledge during problem solving. This will 

in turn benefit problem solving in science which relies on conceptual and procedural 

knowledge.  

However, it is a challenging process which requires numerous practice and repetitions 

(Ericsson, 2005; 2006b). Also, for this to work effectively, it requires the initiation of attention 

on the students’ part. Hence student motivation is also necessary in order for learning tasks to 

be completed and for learning to occur. On the other hand, even if students are motivated and 

focused on the learning tasks, schema acquisition will still not take place if the element 

interactivity of a learning task is so high that it exceeds the capacity of WM. It is therefore 

crucial that learning materials are analyzed in terms of interacting elements to ensure that the 

cognitive load does not exceed students’ WM capacity. Otherwise it will hinder schema 
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acquisition (learning will be adversely affected) and schema automation will not occur 

(adversely affecting future learning of the similar domain) to solve similar problems. 

This chapter will look to element interactivity in cognitive load theory to guide the 

review of instructional approaches in mathematics and science problem solving. Our stand is 

that if element interactivity is effectively managed for secondary school students, it will 

facilitate the construction, development and automation of schemas to solve complex problems 

in mathematics and science.  

2.A.7. Cognitive Load Theory 

To address the cognitive issues on the basis of the information processing model of 

human cognition described above, researchers have developed cognitive load theory (CLT) to 

examine instructional designs and to improve learning (Mayer, 1992; Sweller, 2012; Sweller et 

al., 2011). Cognitive load theory (CLT; Paas et al., 2003; Sweller, 1988, 1999) is mainly 

concerned with the learning of complex cognitive tasks, where learners are often overwhelmed 

by the number of information elements and their interactions that need to be processed 

simultaneously before meaningful learning can begin. Instructional control of this excessively 

high load, in order to attain meaningful learning in complex cognitive domains, has become the 

focus of CLT. A major purpose is to make the cognitive load involved in the mental processing 

of instructional materials manageable (Yeung, 1999). CLT deals with complexity using a 

single construct, element interactivity (Sweller, 1994, 2006; van Merriënboer & Sweller, 

2005). As mathematics and science learning is often regarded as complex, we use CLT to 

analyze a number of mathematics and science problems in terms of element interactivity.  

2.A.8. Element Interactivity 

Element interactivity is the major source of WM load for all the three types of cognitive 

load identified by CLT – intrinsic, extraneous and germane (Sweller, 2010). Sweller defines an 

element as “anything that needs to be or has been learned, such as a concept or a procedure” (p. 
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124). In most cases of problem solving that require the application of conceptual knowledge 

and mathematical procedures, essential elements of information required to solve the problems 

are often interrelated and need to be dealt with simultaneously. This inevitably results in 

element interactivity. According to Sweller (2010), if an element is to be learned in isolation, 

with minimal reference to other elements, there is low element interactivity in the learning 

material. In contrast, if the new material consists of elements that heavily interact and cannot 

be learned in isolation, then it is considered to have high element interactivity. 

Element interactivity is at the epicenter of mathematics and science education. The 

learning of mathematics and science not only involves the understanding of concepts and 

procedures, but also the relations among multiple elements and manipulating them to solve 

problems. Most word problems in mathematics and science require the students to find a value, 

for example, “calculate the density of the wood”. Many students, being novices, will use a 

means-ends analysis strategy to handle the problem (Newell & Simon, 1972; Sweller, 1988) 

and consider: (1) the current problem state (e.g., values and information given in the problem), 

(2) the goal state (e.g., value to be found), (3) the differences between the two states, (4) the 

problem solving operators that can be used to reduce the differences (e.g., algebraic rules or 

scientific formula that can be used to find the value), and (5) any sub-goals that have been 

established. Each process involves several elements and when considered simultaneously, 

would result in a high number of interacting elements within each and across multiple 

processes. The high level of element interactivity makes learning mathematics and science 

difficult for a novice learner who has low pre-existing knowledge of the new learning material 

(van Merriënboer & Sweller, 2005).  

The cognitive load imposed on students during mathematics and science problem 

solving is proportionate to the extent to which the various elements interact (Ngu, Chung, & 

Yeung, 2015). Therefore, it is the element interactivity that primarily determines the level of 
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complexity of the problem solving task, not just the number of elements involved in the mental 

process (Carlson et al., 2003; Leahy & Sweller, 2005; Pollock, Chandler, & Sweller, 2002). 

For example, even if a problem involves only a few elements, it will be a complex problem to 

solve if these elements are so highly interacting with one another that the WM is overloaded. 

For secondary school students learning mathematics and science, the many interactive elements 

including the application of rules, following procedures, the manipulation of symbols and 

values, as well as applying relevant conceptual knowledge, may incur a high cognitive load 

within their limited WM space.  

In this chapter, we illustrate how element interactivity may be estimated based on 

secondary school students’ knowledge levels. A few assumptions need to be stated to make 

sense of our estimates. First, the following analysis assumes that the learners are novices, 

learning to solve the word problems for the first time. They are assumed to have a good 

understanding of the language in the problem statement (so the words in the problem text are 

considered as one “chunk” of element) and of carrying out basic mathematical procedures (so 

an operation such as multiplication is considered as one element). The element interactivity in 

word problems that lead to the three types of cognitive load is analyzed below.  

2.A.8.1. Intrinsic Cognitive Load 

Intrinsic cognitive load is imposed by the basic structure of the learning material 

(Sweller et al., 2011). The level of intrinsic cognitive load is assumed to be determined by the 

level of “interactivity” among essential elements of information (Sweller, 2010, p. 124). For 

example, learning individual symbols in the formula of the area of a circle (A = πr2) in 

isolation by role would involve limited understanding, and incur low element interactivity. The 

learner can learn the symbol ‘A’ (area), ‘π’ (a number), and ‘r’ (radius) independent of each 

other. In contrast, learning the relation between the elements in that the left side, A (area), 

equals to the right side, π × r2, could constitute a high element interactivity task. The learner is 
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required to process the relations between five elements (A, =, π, ×, r2) simultaneously to 

understand area (A) in the context of a circle. In essence, intrinsic cognitive load can be 

estimated by examining the number of elements and the interactions among them that are 

necessary for solving the problem successfully. 

However, while element interactivity levels may be estimated in terms of the 

interacting elements (Sweller & Chandler, 1994; Tindall-Ford et al., 1997), the effects of the 

cognitive load involved may be quite different for different learners depending on their 

knowledge level (Sweller, 2010; Kalyuga, Ayres, Chandler, & Sweller, 2003; Yeung, Jin, & 

Sweller, 1998). For example, for a mathematics expert (e.g., mathematics teacher), the formula 

of the area of a circle (A = πr2) that constitutes one element (recalled as a schema) may instead 

constitute several interacting elements for a secondary school student who is still a novice in 

mathematics for whom such schemas do not yet exist. Nevertheless, a full assessment of the 

elements and their interactivity involved in problem solving irrespective of prior learner 

expertise is a reasonable starting point for estimating the intrinsic cognitive load involved in 

the process.  

2.A.8.2. Extraneous Cognitive Load 

Instructional procedures such as lesson delivery and structures of instructional 

information (i.e., pedagogy) that are less than optimal can also impose a cognitive load on the 

WM, in a way that may not contribute to learning (Sweller, 2010). This “unnecessary to 

learning” load is called “extraneous cognitive load”. Extraneous cognitive load takes up 

available cognitive resources that can otherwise be used for schema development and 

acquisition, which enhances learning. Math and science can be taught in various ways and each 

way may generate its own extraneous cognitive load, depending on how the interacting 

elements in text, audio and visual inputs are organized by teachers to teach students a new 

concept or procedure.  
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Much research has been conducted to show the various sources of extraneous cognitive 

load such as those that lead to different effects including goal-specific (Sweller, Mawer, & 

Ward, 1983), split-attention (Sweller, Chandler, Tierney, & Cooper, 1990), and redundancy 

effects (Chandler & Sweller, 1991). In all of the experiments that showed these effects, student 

learning improved when either the elements or their interactions were reduced in the 

instructional procedures. Therefore, reducing the element interactivity in extraneous cognitive 

load will free up WM resources for germane cognitive load which are crucial to learning. In 

other words, extraneous cognitive load is often “avoidable” by improving “sub-optimal 

instructional designs” (Beckmann, 2010, p. 253). That is, if teachers are able to reduce the 

element interactivity in a learning task without altering what is learned, then the extraneous 

cognitive load can be reduced or eliminated. Students carrying out a problem solving task will 

also experience extraneous cognitive load during the problem solving task itself, due to their 

lack of problem-type schemas as a result of sub-optimal instruction. The element interactivity 

due to students’ choice of sub-optimal methods to solve a word problem will impose 

extraneous cognitive load on the WM. More examples on element interactivity resulting in 

extraneous cognitive load will be described later in the chapter.  

2.A.8.3. Germane Cognitive Load 

WM resources that the learner allocates to dealing with intrinsic cognitive load which 

are relevant to learning a material can be referred to as germane cognitive load (Sweller et al., 

2011). Cognitive load imposed by learning activities is considered germane in nature when it 

directly relates and contributes to schema development and automation (Chinnappan & 

Chandler, 2010) which brings about meaningful learning (van Gog, Paas, & van Merriënboer, 

2006). Germane cognitive load does not constitute an independent source of cognitive load. It 

merely refers to the WM resources available to deal with the element interactivity associated 

with intrinsic cognitive load (Sweller, 2010).  
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According to Sweller (2010), germane cognitive load is “purely a function of the 

working memory resources devoted to the interacting elements that determine intrinsic 

cognitive load” and by assuming constant levels of motivation, “the learner has no control over 

germane cognitive load” (Sweller, 2010, p. 126). As germane cognitive load is concerned with 

knowledge acquisition, it has been an important facet of CLT for some time but has been least 

explored and explained in terms of element interactivity. As schema formation occurs through 

the retrieval of existing schemas and encoding of new information, involving interacting 

elements from WM and LTM, germane cognitive load should be seen as a result of element 

interactivity and associated cognitive behaviors (Beckmann, 2010). For example, if students 

are asked to find the area of a circle (after prior optimal instruction), they would be able to 

recall the formula of the area of a circle (A = πr2) as a single element (i.e., schema) from LTM. 

Retrieving the formula as a schema to interact with the magnitude of the radius of the circle 

given in the problem, r, in WM, together with other elements such as the conceptual and 

procedural knowledge of problem solving, involves element interactivity that constitutes 

germane cognitive load.  

In the following segments, we will illustrate how element interactivity in these 

cognitive loads affects students’ problem solving in mathematics and science. By analyzing the 

cognitive load in terms of element interactivity, we can look into areas where element 

interactivity can be reduced for instructional information to be more effective.  

2.A.9. Element Interactivity and Solving Mathematical Equations 

Figure 2.2 shows a widespread problem on solving equation as illustrated by Ngu et al. 

(2014). In their study, they explained how the element interactivity involved in solving 

equations such as this would impose cognitive load on a secondary school student, although 

they did not specifically describe element interactivity in terms of each type of cognitive load.  
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Find the unknown a in the following equation: 

 

Figure 2.2. A mathematical problem. 

 

Solution using the balance method 

  

Solution using the inverse method 

 

Line 1 
 

 

x2 on both 

sides 

  

Line 1 
 

 

2 becomes 

x2 

Line 2   x2      x2   Line 2   (5+a) = 1 x2 remove 

bracket 

Line 3 (5+a) = 2 remove 

bracket 

 Line 3    5 + a = 2 +5 becomes 

-5 

Line 4  5 + a = 2 -5 on both 

sides 

 Line 4  a = 2 - 5  

Line 5 -5      -5   Line 5  a = -3  

Line 6    a = -3       

Figure 2.3. Two approaches to solving a mathematical problem. 

 

In an experiment, Ngu et al. (2014) examined two methods of teaching students to solve 

equations – the balance method and the inverse method. They illustrated how solving the same 

equation (i.e., keeping intrinsic cognitive load of the equation constant) using different 

methods would alter element interactivity, which would in turn affect student learning. Figure 

2.3 shows the two procedures used in each method (Ngu et al., 2014, p. 5).  

2.A.9.1. Intrinsic Cognitive Load 

As intrinsic cognitive load is imposed by the complexity of the problem itself, the 

intrinsic cognitive load of the equation presented here is the same for both methods. There are 

four elements (5, a, 2 and 1) in the equation with three operations (+, ÷ and =). The problem 

involves four concepts: (1) ‘a’ represents an unknown number, (2) interprets the two elements 

(5 and a) within a bracket as one entity, (3) the = sign describes a relation between the left and 

right sides so that they are equal, and (4) to isolate ‘a’ and find its value. The elements and 

concepts need to be processed simultaneously in order to solve the problem and cannot be 
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altered by the instructional method. Both the balance and inverse methods need to address all 

the interacting elements that constitute intrinsic cognitive load of the equation.  

2.A.9.2. Extraneous Cognitive Load 

Changing the way elements interact without altering the intrinsic nature of the problem 

is a way to modify the extraneous cognitive load during instruction. The balance and inverse 

methods as described by Ngu et al. (2014) have different levels of element interactivity, 

imposing different levels of extraneous cognitive load on the student (Figure 2.3). The inverse 

method has apparently less interacting elements than the balance method in the procedure, and 

therefore, tends to impose less extraneous cognitive load on the students solving the equation.  

To illustrate the element interactivity involved in solving the equation in Figure 2.3, 

Ngu et al. (2014) used relational and operational lines to describe the solution procedure. A 

relational line describes a relation between elements (i.e., values, pronumeral) whereby the left 

side equals the right side (e.g., Line 1 of balance and inverse methods, Figure 2.3). An 

operational line shows the application of an operation to change the problem state of the 

equation and yet at the same time to preserve the equality of the equation (e.g., Line 2 of 

balance and inverse methods, Figure 2.3). The main difference between the balance and inverse 

method lies in the operational line (e.g., -5 on both sides vs. +5 becomes -5), where the 

interaction between elements occurs on both sides of the equation for the balance method, but 

only on one side for the inverse method. Consequently, the learners need to invest more 

cognitive effort to manage the increased element interactivity arising from the operational line 

of the balance method. 

The results of the experimental study by Ngu et al. (2014) supported the above 

hypothesis. In their study, they found that the group of students using the ‘inverse method’ 

outperformed the balance group for equations that involved high element interactivity. The 

students in the inverse method group also reported less mental effort than those in the balance 
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method. Hence, when the degree of element interactivity is reduced, as is the case of the 

inverse method, students have more WM capacity to deal with the interacting elements in the 

equation solving task. This, in turn, will increase the students’ problem solving efficiency over 

time, as schema construction and automation processes are supported.  

The merit of the balance method (Rittle-Johnson & Star, 2007, 2009; Star & Rittle-

Johnson, 2008; Star & Seifert, 2006) is that it generates meaningful learning by focusing on the 

conceptual aspect of the “balanced” feature of a mathematical equation. Nonetheless, students 

who are novices in equation solving may not have enough WM resources to deal with the high 

level of element interactivity introduced by the balance method across the operational lines in 

the solution procedure. When there are insufficient cognitive resources for coding to occur 

(Figure 2.1), schema construction for problem solving will be hindered, and students will not 

be able to solve similar problems in the future, as schema automation will not occur. Hence, to 

promote learning, there should be a reduction in element interactivity in order to increase the 

transfer of information from WM to LTM for schema construction. 

2.A.9.3. Germane Cognitive Load 

The element interactivity of conceptual and procedural knowledge during problem 

solving constitutes germane cognitive load. For an equation, the element interactivity in 

conceptual and procedural knowledge is embedded in the operational and relational lines in the 

solution procedure. For (5+a)/2 = 1 (Figure 2.3), the balance method requires the learner to 

perform the same operation such as ×2 on both sides in order to balance the equation 

(procedural knowledge). An understanding of (5+a)/2 = 1 is the same as (5+a)/2×2 = 1×2 

implies the grasp of the relation between elements whereby the left side equals to the right side 

of the equation (conceptual knowledge). The inverse method described by Ngu et al. (2014) 

requires the learner to treat, for example, division as inverse to multiplication (Cai, Lew, 

Morris, Moyer, Ng, & Schmittau, 2005), and then move ÷2 from the left side to become ×2 on 
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the right side in order to balance the equation (procedural knowledge). If the learner is able to 

judge (5+a)/2 = 1 and (5+a) = 1×2 as being equivalent, he or she must have understood the 

relation between elements where the left side equals to the right side of the equation 

(conceptual knowledge).  

For experts with adequate prior procedural and conceptual knowledge to solve the 

equation with either the balance or the inverse methods, there will be enough room in their 

WM to deal with the element interactivity and to make a choice between the balance or the 

inverse method. However, for students who are novices at solving such problems, using a 

method with high element interactivity may constitute a high extraneous cognitive load that 

will take up so much cognitive resources that there will be no room for germane cognitive load. 

In such a case, schema construction will be impeded and learning will be hindered. Repeatedly 

solving similar problems using a method suitable to the learner during the process continually 

activates the newly acquired schema to reinforce it. Essentially, the germane cognitive load 

generated from practice has the function of optimizing learning by consolidating the concept, 

the procedure, and the connection of both. This enables the learner to transform from a novice 

to an expert in solving that specific type of problems due to the automation of schemas. For 

this particular example where the balance method has the advantage of establishing the 

‘balance’ concept (conceptual knowledge) while the inverse method reduces the burden of 

element interactivity during the solution procedure (procedural knowledge), both methods need 

to be introduced at suitable stages of instruction. Nevertheless, teachers’ judgment on the 

appropriate timing for introducing either of the methods is crucial because after all, the effects 

of element interactivity due to instructional approaches depend also on learner expertise 

(Yeung, 1999). 
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2.A.10. Element Interactivity and Science Problem Solving 

The learning of science, especially in the branch of physics, requires the students to 

solve problems mathematically, applying formulae that represent the relationships among 

quantities which have been derived from concepts that have been theoretically proven. To 

apply the formulae effectively, students require procedural knowledge in equation solving and 

conceptual knowledge in the scientific domain. Most students find such a learning task difficult 

because it requires the students to manipulate multiple interacting elements simultaneously. As 

explained by Carlson et al. (2003) and Leahy and Sweller (2005), the processing of interacting 

elements that cannot be separated from each other constitutes high cognitive load and makes 

the learning task difficult. Like in solving mathematics problems, the high degree of element 

interactivity in solving problems in science arises from the combination of relational and 

operational processes (important procedural steps), as well as the simultaneous application of 

mathematics and science conceptual and procedural knowledge, which need to be processed 

altogether. To illustrate the element interactivity involved in solving typical science problems, 

we will first look at how solving a science problem on density (Figure 2.4) would impose 

cognitive load on a secondary school student.  

 

The mass of a copper rod is 60 g. What is its density if it 

has a volume of 15 cm3? 

  Solution: 

Density = mass / volume 

= 60 g / 15 cm3 

= 4.0 g/cm3 

Figure 2.4. Science problem on density. 
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2.A.10.1. Intrinsic Cognitive Load 

The words, numbers and units that exist in the information of the problem text are 

considered as elements and need to be simultaneously processed in the learner’s WM for the 

problem to be understood and solved. This constitutes intrinsic cognitive load and for this 

problem on density (see Figure 2.4), there are two chunks of elements that need to be processed 

simultaneously - words and magnitudes (i.e., 60 g and 15 cm3) - imposing a low intrinsic 

cognitive load on WM, assuming that the students have a good understanding of the language 

and are familiar with magnitudes.  

While this problem may be simple to an expert, it may not be so for a novice who is 

newly introduced to solving such word problems. The two lines of information in the problem 

may not contain many elements of information, but the interaction of these elements, together 

with interacting elements for the conceptual and procedural processes of science and 

mathematics may impose a substantial amount of cognitive load on the students. The 

conceptual process will involve the knowledge of the relation between density, mass, and 

volume. The procedural process will involve the manipulation of the algebraic transformation 

of density = mass / volume, where the solution can be density, mass, or volume, depending on 

the problem situation. This cognitive load, however, could be reduced with practice, which 

supports schema construction and automation, as students’ pre-existing knowledge in the 

domain increases.  

2.A.10.2. Extraneous Cognitive Load 

Extraneous cognitive load is the result of engaging in activities that are not directed at 

schema acquisition (Sweller, 1994). Such activities include finding, relating, or integrating 

elements of information within the instructional materials. These activities could be considered 

as elements and result in element interactivity when experienced by students concurrently. 

Problem solving search (Simon & Kadane, 1975), where the goal is to reach a solution to a 
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problem, and a search technique commonly experienced by novices during problem solving, 

known as the means-ends analysis (Sweller, 1988), can impose extraneous cognitive load on 

the students, who are mostly novices at problem solving. Sweller (1988) stated that novices 

carry out this search in their attempts to reduce the differences between the problem state 

encountered (e.g., finding the unknown density given two magnitudes of mass and volume) and 

the goal state (e.g., finding density), using operators such as the rules of algebra and the density 

formula.  

Part of the problem solving search also includes decision making processes where 

students decide on appropriate moves to undertake in order to complete each step of the 

problem solving process. For this problem (Figure 2.4), students will need to identify the task 

features of the problem and search for a method to calculate density, given the two magnitudes 

of mass and volume in the problem. This search technique is categorized as extraneous 

cognitive load as it is not intrinsic to the problem itself, but is instead a process adopted by the 

novice in an attempt to solve the problem. Experts would have existing problem-type schemas 

(Gick & Holyoak, 1983; Reed, 1993) that they could easily retrieve from their LTM to 

instantiate with the information in the problem to execute a solution (van Lehn, 1989), with 

procedural moves that are mostly automated within each step of problem solving.  

For students who are mostly novices, the problem solving search processes interact 

with each other to create a substantial extraneous cognitive load. However, with effective 

instruction and more practice sessions, such problem solving processes can become automated 

as a consequence of repeatedly recalling information as schemas, reducing the cognitive load to 

a manageable level (Yeung, 1999). Extraneous cognitive load manifested in the form of such 

search processes involve element interactivity, which uses up limited WM resources that could 

otherwise be devoted to learning. Omitting crucial information, or not relating the formula to 

scientific reasoning during acquisition, results in students not being able to retrieve the formula 
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as a schema and thus would not be able to solve the problem like experts, who would begin 

problem solving by choosing a suitable equation formula for the problem, eliminating the 

backward-working phase (Larkin et al., 1980; Simon & Simon, 1978). An effort to just 

memorize the formula without understanding the concept could worsen the problem solving 

search process and could lead to a wrong recall of information, dampening the success of 

recalling the correct formula (e.g., is it volume / mass or mass x volume or mass / volume?) to 

effectively solve the problem. Element interactivity in extraneous cognitive load will be 

discussed in greater detail later when we compare two methods of solving the same problem.  

2.A.10.3. Germane Cognitive Load 

The process of solving the problem (Figure 2.4) involves several interacting elements: 

(1) the formula of density = mass / volume indicates a relation in that the density is equal to a 

specific quantity of mass in g, divided by a specific quantity of volume in cm3, and the density 

is expressed in g per cm3, (2) mass and volume each is associated with a value and respective 

units, (3) matching of a variable and values in a formula (i.e., symbolic representation of 

relations), and (4) mathematical procedure involving interacting elements such as values and a 

variable. After analyzing the problem (intrinsic cognitive load), the students with relevant pre-

existing knowledge would be able to use the formula density = mass / volume as a single 

element (schema) and apply it to solve the problem mathematically.  

The purpose of instruction in problem solving is to facilitate schema construction and 

consolidate it so that it is retrievable. Practice is therefore essential for establishing the link 

between the conceptual and procedural elements of problem solving in various forms and 

combinations. Practice inevitably introduces cognitive load, which may be intrinsic or 

extraneous, or both. However, the cognitive load involved in practice is somewhat different 

from the cognitive load during the acquisition stage when neither the concept nor the procedure 

was well established. During acquisition, students are given the formula: Density = mass / 
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volume; whereas during practices, the formula is assumed to have become part of the students’ 

schema and is therefore not given. The cognitive load involved in practice is therefore 

primarily due to the need to retrieve the formula from LTM before working out the solution 

using their procedural knowledge. After substituting the values into the formula, the students 

need to apply their mathematical skills to compute the division. The whole process constitutes 

germane cognitive load which involves not only the five interacting elements (60, its unit g, 

division operation, 15 and its unit cm3 to come up with the final answer, 4.0 g/cm3), but an 

interaction between these and the newly formed problem-based schema of density = mass / 

volume. 

In essence, retrieving this essential information from the schema (probably not stable at 

initial stages of new learning) to interact with all other elements constitutes germane load 

because the practice consolidates and automates the mental process, which facilitates the 

construction and automation of schemas. With more practice, schema construction and 

automation will be enhanced, reinforcing students’ pre-existing knowledge. Intrinsic cognitive 

load, and in turn, germane cognitive load will be subsequently reduced, as less WM resources 

are required to deal with the interacting elements when automation of conceptual and 

procedural schemas related to solving such problems are developed. As students progress in 

their lessons on density, the science curriculum will typically challenge them to do higher-level 

density problems.  

2.A.11. Element Interactivity of Complex Science Problem 

Figure 2.5 shows an example of a higher-level complex density problem (Lau, Foong, 

Kadir, & Wong, 2011) commonly found as a science assessment task for secondary 1 students 

in Singapore. Solving such a complex problem requires students to simultaneously process 

many interacting elements (see Figure 2.6). The following segment explains the element 
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interactivity in the three forms of cognitive load within the secondary school students’ problem 

solving experience.  

 

A piece of copper has a mass of 639 g and a density of 9.0 g/cm3. A 

piece of tin has a mass of 150 g and density of 6.0 g/cm3. The 2 

metals are melted, mixed together and cooled to form an alloy.        

Find the density of the alloy. 

 

Figure 2.5. Complex problem on density (secondary 1 science curriculum in Singapore). 

 

2.A.11.1. Intrinsic Cognitive Load of Complex Problem 

Similar to the density problem discussed earlier, to solve this word problem, students 

need to understand its objective by reading the words and studying the magnitudes (numbers 

and units) involved. The element interactivity in dealing with the words and magnitudes in the 

problem simultaneously constitutes intrinsic cognitive load. In addition to that, mathematical 

knowledge, as well as students’ pre-existing knowledge and understanding of the science 

concept of density and the term “alloy” need to be strong as well, in order to first decide what 

to do to solve the problem.  

For example, firstly, students’ schema of the formula, density = mass / volume, needs to 

be applied to calculate the density of alloy, but both the mass and volume of the alloy are not 

given in the problem and have to be derived from the other quantities. In other words, the sub-

goals of the problem involve the calculation of the volume of copper and the volume of tin 

separately. This increases the level of element interactivity in the problem, imposing a high 

intrinsic cognitive load.  

Like the problem in Figure 2.4, there are three main elements interacting with one 

another simultaneously: words, numbers, and units. However, for this problem, there are two 

different types of units belonging to four different quantities that need to be processed 
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simultaneously. As the information given in the problem cannot be directly substituted into the 

density formula, there is a need to complete some algebraic manipulation at various stages in 

order to complete the problem. Therefore, this problem on density can be categorized as 

complex, especially to a novice learner, because of the high number of interacting elements 

that need to be processed concurrently, imposing a high intrinsic cognitive load. If the number 

of interacting elements exceeds the capacity of the students’ WM, the students will not be able 

to solve the problem correctly. Figure 2.6 shows two different ways to solve the problem. 

2.A.11.2. Extraneous Cognitive Load of Complex Problem: Methods 1 and 2 

Method 1 comprises five steps while Method 2 combines the five steps into two steps to 

solve the problem. Even though Method 1 comprises 5 steps, every step in the solution 

involves not more than two elements undergoing just one operation between them (i.e., either 

addition or division). Thus, each step, when considered in isolation, constitutes a low element 

interactivity task.  

In contrast, Method 2 comprises two steps with high element interactivity within each 

step, involving three to four elements undergoing at least two operations (i.e., both addition and 

division) among the elements. Much WM resources are required to execute these two steps 

successfully, resulting in high cognitive load. For example, to complete step 1 in Method 2, 

students have to first apply the algebraic manipulation of the density = mass / volume formula, 

making volume the subject (i.e., volume = mass / density), after which they have to substitute 

the respective quantities for each formula for copper and tin (e.g., volume of copper = mass of 

copper / density of copper). This step alone has high element interactivity (i.e., at least six 

interacting elements of quantities and operations), as students need to concurrently apply both 

their mathematics and science conceptual and procedural knowledge.  

Step 2 in Method 2 has slightly fewer interacting elements but the cognitive load is still 

high (i.e., at least five interacting elements of quantities and operations within one solution 
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step). To complete this step, students have to apply the formula for density by first doing a sum 

of the two masses of copper and tin to find the total mass of the alloy and then dividing this 

sum by the volume of the alloy found in Step 1.  

While Method 2 apparently incurs higher element interactivity compared to Method 1, 

the solution procedure of Method 2 involves fewer steps. If the steps in the solution procedure 

were to be considered as ‘elements’ as well, then the reduced number of steps in Method 2 may 

be considered as a reduction of element interactivity. The two solution steps in Method 2 is 

likened to a typical solution procedure used by an expert in the domain, who tends to choose 

fewer solution steps when solving a problem (Star & Newton, 2009). However, to benefit 

novices, teachers should probably first introduce Method 1 and progress to introducing Method 

2 only after sufficient practice to establish pre-existing knowledge. In fact, teachers can even 

consider introducing an intermediate stage to bridge the element interactivity gap between the 

two methods. The intermediate stage could be one that comprises three solution steps: volume 

of copper = 69 g ÷ 9.0 g/cm3 = 71 cm3 (step 1), volume of tin = 150 g ÷ 6.0 g/cm3 = 25 cm3 

(step 2), and the density of alloy = (639 + 150) g ÷ (71 + 25) cm3. In terms of the element 

interactivity, the first two steps are identical to steps 2 and 3 in Method 1 and thus each 

constitutes a lower element interactivity task. The third step involves four elements and a 

mathematical operation; hence, it incurs higher element interactivity than the first and second 

steps. 

We can envisage that only problem solvers with a strong conceptual and mathematical 

foundation will be able to solve the problem using Method 2. Problem solvers with an 

established schema will be able to retrieve the ‘density’ formula as well as the relevant 

mathematical and scientific procedures from LTM, greatly reducing the number of interacting 

elements within each step. Method 2 will not pose a challenge for mathematics teachers, for 

example, who are experts in the domain because they can treat the density concept, formula 
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and the mathematical procedures as a single unit or element. Without established schemas, the 

high element interactivity within each step will overload the students’ WM, hindering the 

success of problem solving. On the other hand, as students’ expertise in solving such density 

problems increases, Method 1 could even cause an expertise reversal effect (Kalyuga et al., 

2003), making Method 2 a more effective approach to solve the problem. Expertise reversal 

effect comes about when instructional methods which are effective for novice learners become 

ineffective as learners gain expertise in the domain, and contributes to extraneous cognitive 

load for the experts (Kalyuga, 2007). In sum, the interacting elements at every stage of the 

problem solving process have to be manageable for the students. 

 

To effectively solve this problem, students need to apply this formula: 

Density of alloy = total mass of alloy / total volume of alloy 

Method 1 using the step by step method Method 2 using the combined method 

Step 1 

 

Total mass of alloy  

= mass of copper + mass of tin 

= 639 g + 150 g  

= 789 g 

Step 1 

 

Total volume of alloy  

= Total volume of copper and 

tin 

= (639 g / 9.0 g/cm3) + (150 g / 

6.0 g/cm3)  

= 96 cm3 

Step 2 Volume of copper 

= mass  / density 

= 639 g / 9.0 g/cm3 

= 71 cm3 

Step 2 

 

Total density of alloy  

= total mass / total volume 

= (639 g + 150 g) / 96 cm3 

= 8.2 g/cm3 

Step 3 Volume of tin 

= mass / density 

= 150 g / 6.0 g/cm3 

= 25 cm3 

  

Step 4 Total volume of alloy  

= volume of copper + volume of 

tin 

= 71 cm3 + 25 cm3 

= 96 cm3  

  

Step 5 Total density of alloy  

= mass of alloy/volume of alloy 

= 789 g / 96 cm3 

= 8.2 g/cm3 

  

Figure 2.6. Two ways to solve a science problem. 
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2.A.11.3. Germane Cognitive Load of Complex Problem 

The process of solving this problem involves four interacting elements: (1) the concept 

of density = mass / volume, (2) mass and volume for each metal: copper, tin and alloy, (3) 

matching of variable and value in a formula (i.e., symbolic representation of relations), and (4) 

mathematical procedure involving interacting values.  

After instruction thus far, the student would have learned 1 above (concept) and also 2, 

3, and 4 (problem solving procedure). Retrieving 1 from the schema (probably not stable at 

initial stages of new learning) to interact with 2, 3, and 4 constitutes germane load because the 

practice consolidates and automates the mental process. If students have had much practice 

before, they would know how to apply the density formula and process the multiple interacting 

elements in the problem to solve the problems correctly (i.e., apply scientific concept, recall 

related formula, use mathematical skills to solve problem). These basic concepts would be 

recalled as schemas. However, for this problem, there are several magnitudes given and they 

are not easily substituted into the density formula directly. Those schemas need to interact with 

the new elements in the problem contributing to a high level of element interactivity during 

problem solving.  

Since there are two different values of mass and two different values of volume given 

in the problem, students with a good understanding of the concept of density and alloy will 

make the correct decision as to how to use the density formula to solve the problem, applying 

the concept that density is mass per unit volume. Students lacking in understanding the density 

concept will not know how to manage the different elements of information provided in the 

problem. In addition to that, students’ pre-existing knowledge of mathematical skills such as 

algebra needs to be good as well, since the quantity of volume is not given and needs to be 

derived from the density formula (i.e., density = mass / volume) by the manipulation of 

quantities (i.e., volume = mass / density) using their algebraic skills. For example, WM 
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resources are required for the high element interactivity involved in the process of executing 

two operations of division and addition involving four magnitudes within a single operational 

line in step 1, Method 2. If students have superior mathematical skills and chose Method 2 to 

complete the problem, they would retrieve the mathematical procedural knowledge as schemas, 

freeing up WM resources to deal with the interacting elements of the science concepts 

imposing germane load that is within the capacity of WM.  

2.A.12. Discussion 

From the examples discussed in this chapter, we have illustrated the various types of 

cognitive load involved in learning mathematics and science problem solving in terms of 

element interactivity. Problems that appear ‘simple’ due to few elements in the problem 

statement may not be simple to secondary school students who are mostly novice problem 

solvers, due to the high element interactivity among the conceptual and procedural knowledge 

and processes required to solve the problem. Table 2.1 summarizes the issues of element 

interactivity in the three types of cognitive load during conceptual and procedural knowledge 

acquisition.  

2.A.12.1. Theoretical Implications 

The examples in this chapter provide a new theoretical perspective for cognitive load 

theory (CLT), and in particular, the critical role of element interactivity in the understanding 

and learning of mathematics and science. In problem solving, some materials can only be 

understood if multiple elements are considered simultaneously in WM rather than serially 

(Carlson et al., 2003). Materials that require the concurrent processing of several elements 

constitute high element interactivity. Materials or learning tasks with high element interactivity 

contribute to a high intrinsic cognitive load. This is because the multiple learning elements and 

their relations (i.e., procedural and conceptual knowledge) need to be processed together 

through a very limited WM. Under these conditions, choosing the instructional methods and 
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procedures that reduce element interactivity for secondary school learners will reduce the total 

cognitive load in the WM, which is likely to aid learning and understanding of mathematics 

and science. Once students have had experience with the learning tasks and developed domain-

specific schemas, other methods involving higher cognitive load can be introduced, as the 

schemas will reduce the element interactivity and not overwhelm the WM.  

Table 2.1  

Summary of Element Interactivity 

Knowledge Intrinsic CL Extraneous CL Germane CL 

Conceptual Understanding the 

context of the problem 

by: 

 

▪ Reading and 

processing the 

words, variables 

and magnitudes 

which interact in 

the problem 

context and 

▪ Matching these 

with the major 

concepts. 

Working towards the goal 

of finding a solution to 

the problem, involving 

interacting elements 

embedded in problem 

solving search processes 

such as 

 

▪ Finding, relating, and  

integrating pieces of 

information in the 

problem 

 

 

Connecting the existing 

problem context with 

pre-existing knowledge 

by:   

 

▪ Applying the relevant 

equation to solve the 

problem 

▪ Integrating separate 

conceptual elements 

into a whole concept 

Procedural Identifying the 

mathematical 

strategies required to 

solve the problem by: 

 

▪ Analyzing the 

words, variables 

and magnitudes 

which interact as 

chunks during 

problem analysis 

and 

▪ Assessing the 

problem state and 

solution state by 

processing the 

interacting 

elements in the 

problem  

 

Means-ends analysis: 

 

▪ Making decisions 

towards the choice of 

problem solving 

moves to complete 

each solution step 

Schema construction and 

automation by recalling 

existing problem-type 

schemas and applying 

conceptual knowledge 

and mathematical 

strategies by: 

 

▪ Recognizing relevant 

problem states and 

associated procedural 

moves and 

▪ Carrying out the 

mathematical 

procedure 
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2.A.12.2. Practical Implications for Mathematics and Science Education 

Secondary school students who are new to a learning task are considered as novice 

learners due to their lack of pre-existing knowledge (thus lack of schemas) in that learning 

domain. Unless mathematics and science instruction has a mechanism to reduce the degree of 

element interactivity for complex learning tasks, problem solving will remain difficult for 

secondary school students. This is because when element interactivity is high, students’ 

cognitive resources will be overloaded and when the WM capacity is exceeded, learning will 

not occur (Kalyuga et al., 2003). Therefore, instruction for novices has to start with a simple 

problem with few interacting elements, as the elements may need individual attention before 

interactions between the elements can be understood (Cook, 2006). For example, if students are 

not able to assimilate both conceptual and procedural knowledge concurrently, teachers should 

focus on one, and introduce the other at a later stage when students have acquired the relevant 

schema for the specific concept. Reducing element interactivity at the initial stages and 

gradually increasing it as schemas in the domain that are more established will make learning 

more effective for the students.  

High intrinsic cognitive load can be modified by isolating the interacting elements, 

where possible, to provide a simpler learning task (Ayres, 2006, 2013). This modification will 

allow novices to construct lower-level schemas to gradually progress to higher-level schemas 

for the highly interactive materials (Ayres, 2006, 2013; Gerjets et al., 2004; Pollock et al., 

2002). When students have had more practice and knowledge, their schematic mental webs 

intensify and by recalling conceptual and procedural knowledge as schemas, they will be able 

to process materials which may constitute a higher cognitive load for other students who have 

not had sufficient practice (e.g., Method 1 vs. Method 2). As problem solving is a common 

feature in secondary school mathematics and science education, it is important that they are 
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analyzed in terms of element interactivity to ensure that instruction is geared towards 

complexity levels appropriate for the students’ knowledge base in the domain.  

2.A.12.3. Recommendations  

To improve learning effectiveness and efficiency, teachers should capitalize on CLT in 

recent progresses in mathematics and science education. We recommend that teachers 

consider:  

1) Analyzing and identifying the element interactivity of instructional materials to 

estimate the cognitive load students may experience in the learning process. 

2) Element interactivity as a basis for determining the complexity of mathematics and 

science materials.  

3) Element interactivity as the starting point for designing appropriate instructions to suit 

learners who exhibit varying levels of mathematics and science abilities. 

4) Identifying the additional cognitive load involved in the process of acquiring 

conceptual and procedural knowledge in solving problems. The intrinsic number of 

elements together with the procedure involved in problem solving may interact to 

introduce unduly high extraneous cognitive load. By delineating the element 

interactivity and devising effective instruction to counter the element interactivity, we 

will be able to facilitate more efficient learning. 

5) Building upon conceptual understanding and progressing to efficient procedures with 

an emphasis on schema construction and maintenance. 

6) Using challenging problems for transfer and extension of existing knowledge. Practice 

does not always make perfect, but effectively progressed practice does. The purpose is 

to generate an appropriate level of germane cognitive load to facilitate schema building 

and retrieval. 
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2.A.13. Conclusion 

Learning to solve problems in mathematics and science entails challenges to our limited 

working memory capacity. The cognitive load involved in learning may be due to the intrinsic 

nature of the learning material or the nature of the instruction causing extraneous cognitive 

load, whereas germane cognitive load is, nevertheless, necessary and beneficial for building 

schemas. Progress in educational theory has enabled us to understand the nature and 

consequence of each type of cognitive load. By conceptualizing cognitive load in terms of 

issues of element interactivity manifested in the learning material (intrinsic cognitive load), or 

the instruction (extraneous cognitive load), or the facilitation of schema construction and 

retrieval (germane cognitive load), educators will be able to devise optimal instruction to 

facilitate learning. Our analysis of secondary mathematics and science problems points to the 

practical benefit of using instructional approaches that address the issue of multiple interacting 

elements to facilitate learning. The conceptualization of cognitive load in terms of element 

interactivity has the potential of bringing further progress in the research on cognitive load not 

only in mathematics and science, but perhaps also in other areas of learning. 
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Section B:                                                                                                                         

The Non-Cognitive Aspects of Learning –                                              

Academic Self-Concept 

 

 

“Self-concept is a hot variable that makes good things happen, facilitating the realization of 

full human potential in a range of settings”  

(Marsh & Craven, 2006, p. 134) 

 

 

 

Note. This section has been accepted for publication as a book chapter in the Encyclopedia of 

Personality and Individual Differences, edited by Virgil Zeigler-Hill and Todd K. Shackelford. 
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2.B. Academic Self-Concept 

 

2.B.1. Preface 

A vast number of studies conducted on academic self-concept over the past four decades have 

highlighted the benefits of high academic self-concept on academic outcomes such as classroom 

behaviors, school achievement, educational and career aspirations, and academic choices. There 

remain, however, questions concerning whether the operationalization of academic self-concept 

as a single factor explains these positive outcomes or whether certain components of academic 

self-concept are responsible for specific academic outcomes. Researchers who have looked into 

the internal structure of academic self-concept have recently differentiated it into cognitive and 

affective components. While some studies have attended to both of these highly related but 

distinct components of academic self-concept, most studies have focused mainly on the 

competency (cognitive) component. The purpose of this chapter is to provide some insights into 

the two distinct components of self-concept (i.e., competency and affect) and their associations 

with academic outcomes. This chapter also discusses four other major theoretical advances in 

academic self-concept research, namely, domain specificity, reciprocal effects, frame of 

reference, and interrelatedness among academic domains. Awareness of the special 

characteristics of each component of academic self-concept, as well as its role in contributing to 

different educational outcomes, can help educators provide learners with the best learning 

environment to optimize their potential. 
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2.B.2. Definition 

In a general sense, academic self-concept (ASC) can be defined as one’s academic self-

perceptions or one’s perception of one’s general ability in school (Shavelson, Hubner, & 

Stanton, 1976). This conceptualization of ASC was part of the multidimensional and 

hierarchical self-concept model for students proposed by Shavelson et al. (1976) and later 

modified by Marsh and Shavelson (1985). The model puts global self-concept at the apex of 

the self-concept hierarchy which then branches into two separate facets: (1) ASC and (2) non-

ASC, each of which further branches out into specific domains (see Shavelson et al., 1976, p. 

413).  

2.B.3. Introduction 

Academic self-concept (ASC) has been widely researched, with studies spanning over 

four decades. The prominence of this research is due to the associations found between ASC 

and a wide range of educational and behavioral outcomes (Marsh & Craven, 2006). These 

outcomes include achievement (e.g., Kadir, Yeung, & Barker, 2012; Marsh & Yeung, 1997), 

motivation (e.g., Yeung, Craven, & Kaur, 2012), effort, (e.g., Yeung, 2011), educational 

aspirations (e.g., Yeung, Kuppan, Foong et al., 2010), course choices (e.g., Guo, Parker, 

Marsh, & Morin, 2015) and career aspirations (e.g., Yeung, Kuppan, Kadir, & Foong, 2010). 

On one hand, these findings reinforce Marsh and Craven’s (2006) claim that “self-concept is a 

hot variable that makes good things happen, facilitating the realization of full human potential 

in a range of settings” (p. 134). On the other hand, findings suggesting that self-concepts do 

good things for everyone in every way may lead to questions about whether further self-

concept research is needed at all. This chapter attempts to summarize the major findings in 

self-concept theory (Marsh, 1986) and identify directions for applications and further research. 

Between a global ASC and distinct ASC in specific domains, Marsh and Shavelson 

(1985) advocate focusing on the latter. This is because global academic ASC masks the 
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important distinctions that individuals make when evaluating their ability in various domains 

(Shavelson et al., 1976). Marsh and Shavelson (1985) argued that self-concept cannot be 

adequately understood if only a global component is considered. This argument is particularly 

compelling in the light of evidence showing that ASCs in verbal and math domains are often 

non-positively correlated (Marsh, 1986). In essence, a global ASC may not be particularly 

useful as it cannot adequately represent two major ASCs that are not positively related to each 

other. Following this argument, most studies today have focused on domain-specific ASCs. 

Studies with a domain-specific focus have contributed to the conceptualization and 

identification of various ASC facets, such as the separation of cognitive and affective 

components of academic self-concepts (e.g., Marsh, Craven, & Debus, 1999); the domain 

specificity of self-concept (e.g., Yeung, Kuppan, Foong et al., 2010); the reciprocal effects 

between self-concept and outcomes (Marsh & Craven, 2006); and the frame of reference model 

(Marsh, 1986), which also looked into the interrelatedness of academic domains (Xu et al., 

2013). The purpose of this chapter is to provide some insights into the conceptualization and 

measurement of ASC, and how ASC is related to important educational outcomes. Implications 

for advancing theory, research, and practice will also be discussed.  

2.B.4. Measurement of Academic Self-Concept 

Given the subjective nature of ASC, the most appropriate and most popular method 

of measuring ASC is self-reports. The self-report questionnaires given to students generally 

comprise items to which the students respond on a Likert scale, to show the extent of their 

belief in what each item states.  There are many instruments that measure ASC. For 

example, the Perception of Ability Scale for Students (PAAS) (Boersma & Chapman, 1992) 

has been used to measure students’ perceptions of their ability in spelling, reading, writing, 

math, and the language arts and has been shown to have good psychometric properties 

(Marsh & Yeung, 1997). Other instruments that have subscales to measure ASC include the 
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Multidimensional Self-Concept Scale (MSCS) (Bracken, 1992), the Piers-Harris Self-

Concept Scale (Piers & Harris, 1969), and the Tennessee Self-Concept Scale, Second 

Edition (TSCS:2) (Fitts & Warren, 1996). However, two of the most popular instruments to 

measure ASC are: (1) the Self-Description Questionnaire series including SDQI, SDQII, and 

SDQIII designed for use on preadolescent, adolescent, and late adolescent samples, 

respectively (see Marsh & Yeung, 1997), as well as the Academic Self-Description 

Questionnaire (ASDQ); and (2) Self-Perception Profile for Children/for Adolescents (SPP-C 

and SPP-A) by Harter (1985). 

2.B.4.1. Academic Self-Description Questionnaires 

Because of its academic focus, the ASDQ has been extensively used in academically 

focused studies. The ASDQ is multidimensional as it differentiates multiple academic 

domains (e.g., English, math, science, history), in addition to measuring an overall ASC. 

The ASDQ items focus on students’ cognitive perceptions of their domain-specific ability 

(i.e., a sense of competence). The SDQI, SDQII, and SDQIII instruments cover various 

domains including academic, such as verbal and math domains. These scales cover both 

cognitive perceptions and affective-motivational (e.g., interest, values) responses to the 

specific domains. Although the original design of the scale treated these as a combined 

representation of a unified construct, recent research has emphasized the distinctiveness of 

the cognitive and affective-motivational components of ASC (Arens, Yeung, Craven, & 

Hasselhorn, 2011; Yeung, 2011; Yeung, Kuppan, Foong et al., 2010). Self-perceived 

competency was defined by items asking students how competent they feel they are in a 

specific subject domain. Affect was defined by items asking the extent they are interested in 

that domain. Over the years, ASC instruments have extended to include additional academic 

domains (e.g., art, music) and scales in different languages (e.g., Chinese and German).  
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2.B.4.2. Self-Perception Profile for Adolescents and Children 

Another commonly-used series of self-report instruments for measuring ASC is the 

Self-Perception Profile for Adolescents (SPP-A) and Self-Perception Profile for Children 

(SPP-C) developed by Harter (1985). In contrast to the ASDQ, the SPP-A/C is not domain-

specific as it does not address students’ ASC in academic domains (e.g., math; science). 

Examples of the items used in the SPP-A/C instruments are, “Some kids do very well at 

their class work but other kids don’t do well at their class work” and “Some kids have 

trouble figuring out the answers in school but other kids can almost always figure out the 

answers.” The standard items of the SPP-A/C measure students’ general attitudes towards 

school, which is primarily a global measure of ASC. However, researchers (e.g., Bouchey & 

Harter, 2005) have modified the five academic subscale items of the SPP-A (Harter, 1985) 

to measure the domain-specific ASC (i.e., self-perceived competency) of students in 

academic domains such as math and science. Examples of the items are, “I am pretty slow at 

finishing work in science” and “I am smart for my age in math.” This measurement seems to 

work pretty well. 

2.B.5. Important Findings and Advances in ASC Research 

Studies on ASC, which span four decades and several continents, have led to important 

findings. These findings may lead to practical implications in the education sector.  

2.B.5.1. Competency and Affective Components 

Marsh et al. (1999) tested the possibility of separating the self-concept construct into 

competency and affect components, based on research that provided a strong theoretical 

rationale for the separation of expectancy and task value in an individual’s learning motivation 

(e.g., Eccles, Wigfield, Harold, & Blumenfeld, 1993). Marsh et al. (1999) conducted 

confirmatory factor analyses (CFAs) and found a competency and an affect factor which were 

highly correlated, but distinguishable, from each other. The separation of the two ASC factors 
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was also supported by other ASC researchers (e.g., Arens et al., 2011; Yeung, 2011). 

Essentially, they demonstrated that CFA models assuming two factors (with items about 

competency forming one factor and items about affect forming another) was better than a 

single factor solution (assuming a global factor incorporating both competency and affect 

items).  

Arens et al. (2011) reinforced the theoretical underpinning of the competency-affect 

differentiation and further highlighted its importance for better understanding of students’ 

individual differences.  Other studies have shown that ASC, when separated into its cognitive 

and affective components, predicts different educational outcomes (e.g., Yeung et al., 2012). A 

study by Yeung et al. (2012) showed that competency was a better predictor of academic 

achievement than was affect. Other studies have also shown the differential functions of the 

ASC components, supporting the differential prediction hypothesis (e.g., Yeung, Kuppan, 

Foong et al., 2010). Essentially, the competency component of ASC is highly related to 

students’ school achievement (Arens et al., 2011; Kadir et al., 2012) whereas the affective 

component of ASC tends to be associated with students’ behavior in school, including school 

engagement, effort expended on learning tasks, and educational aspirations (e.g., Yeung, 2011; 

Yeung, Kuppan, Foong et al., 2010).  

2.B.5.2. Domain Specificity 

The domain specificity of the effects of ASC means that students can clearly 

differentiate their self-concepts in various academic domains (e.g., math, verbal, science). ASC 

research in the last four decades has repeatedly demonstrated the domain-specific nature of 

ASC (e.g., Marsh & Craven, 2006; Yeung, Kuppan, Foong et al., 2010). Studies investigating 

math and verbal ASC have found them to be uncorrelated (e.g., Marsh, 1986). Over the years, 

many researchers have extended this research to show the domain specificity of ASC in other 

academic domains such as science (e.g., Yeung, Kuppan, Foong et al., 2010) and other verbal 
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domains such as German (e.g., Arens, et al., 2011) and Chinese (e.g., Xu et al., 2013). A 

prevalent area of ASC research examines the relations between ASC and achievement, which 

is also domain specific. This research demonstrates that students’ ASC in a specific academic 

domain (e.g., math) only influences achievement in the respective domain (i.e., math) but not 

any other domain (e.g., English).  

2.B.5.3. Reciprocal Effects 

To determine the causal ordering between ASC and academic achievement, Marsh and 

Craven (2006) proposed the reciprocal effects model (REM) in which ASC predicts subsequent 

achievement, and achievement predicts subsequent ASC. Their multi-wave longitudinal panel 

data displayed the expected reciprocal causal relations between ASC and academic 

achievement; that is, it demonstrated a mutually reinforcing relationship between them. Hence, 

ASC is both an outcome and an antecedent of achievement. Subsequent studies conducted with 

students of different age groups across different countries showed similar results, that academic 

self-concept and academic achievement share a mutually reinforcing relationship, each leading 

to gains in the other.  

This demonstration of the REM has profound implications for education practices as 

reciprocity means sustainability. The potential of sustainability has been further illustrated in 

subsequent research. Consistent with REM predictions, ASC was found to be the best predictor 

of long-term educational attainment – better than socioeconomic status, academic ability, grade 

point average, or global self-esteem (Marsh, Xu, & Martin, 2012).  However, it is important to 

note that the reciprocal effects of ASC and achievement only operate within specific domains. 

For example, a positive math ASC predicts subsequent high achievement in math, and high 

math achievement in turn predicts a subsequent increase in ASC in math, but not in other 

unrelated academic domains such as English.   
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2.B.5.4. Frame of Reference 

Across academic domains, students may use both an internal and an external frame of 

reference to form their ASC (Marsh, 1986). According to Marsh (1986), tests of a frame of 

reference hypothesis started because of a consistent pattern found with student samples 

showing a non-positive (often near-zero) correlation between students’ verbal and math ASC 

but a positive correlation between verbal and math achievement scores. This pattern of results 

implies that even though students may do well in both academic domains, their ASC in those 

domains may differ. Marsh (1986) proposed the internal/external frame of reference (i.e., I/E) 

model to explain such a phenomenon. The model posits students’ simultaneous comparisons of 

their perceived competency relative to: (1) the rest of their academic domains (i.e., internal 

comparison), and (2) their peers (i.e., external comparison). For example, if students perceive 

that their English ability is better than their peers (external comparison), they are likely to have 

a higher English ASC. However, this higher ASC in English may suppress their ASC in other 

non-related academic domains such as math and science (internal comparison). This is because 

students with a high verbal ASC may perceive themselves as a ‘language expert’ instead of a 

‘math or science expert’. The combined operation of both the internal and external 

counterbalancing comparison processes would explain the low, near-zero, or even negative 

correlations between the ASCs (i.e., sense of competency) of the math and verbal domains 

(Marsh, 1986; Marsh et al., 2012). This pattern of results has been shown in studies involving 

different age groups of students in a variety of countries, and using different methodologies, 

such as meta-analysis, experimental, longitudinal, and cross-cultural studies (e.g., Xu et al., 

2013). 

2.B.5.5. Interrelatedness 

As studies involving more domains were conducted, the I/E model underwent serious 

scrutiny. Some researchers found that the I/E model does not hold as strongly for some 
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interrelated domains. Unlike the negative correlation observed between English ASC and 

math achievement or math ASC and English achievement, positive correlations were found 

between other pairs of academic domains such as math and physics (e.g., Marsh et al., 

2015), or English and Chinese (Xu et. al, 2013). Möller and Marsh (2013) extended the I/E 

model into what they called dimensional comparison theory (DCT), which posits that 

negative cross-domain predictive paths between achievement in one domain and ASC in a 

contrasting domain (e.g., math and verbal) will diminish and even become positive for 

domains that share similar features (i.e., interrelatedness). Extending DCT, Marsh et al. 

(2014) showed that the more dissimilar the academic domains, the more negative the cross-

domain paths from achievement to ASC (e.g., math and verbal domains) become, whereas 

cross-domain paths from achievement to ASC for more similar domains (e.g., Dutch and 

English) are much less negative and at times, positive. Research by Marsh et al. (2015) 

considered biology, physics, and math as near domains on the ASC continuum and found 

positive cross-domain effects of achievement on ASC in these three domains, controlling for 

matching achievement. 

2.B.5.6. Gender and Age Differences 

Gender and age are important determinants of ASC, as research demonstrates that 

there are differences in the ASC of male and female students and that ASC varies with age 

(e.g., Marsh, 1989; Yeung, 2011). Females have generally lower global ASC ratings than 

males even if they are performing equivalently or better than males academically (e.g., 

Marsh, 1989). However, studies involving large sample sizes have shown that the gender 

differences for global ASC tend to be small (around d = 0.20) or trivial (d ≤ 0.10) (e.g., 

Hyde, 2014). Most of the differences that exist are in domain-specific ASC that are 

explained primarily in terms of gender stereotypes. For example, males have higher ASC in 
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curriculum domains such as science and mathematics while females have higher ASC in 

verbal domains such as reading (e.g., Marsh, 1989).  

Age differences in ASC can be seen in Marsh’s (1989) study of the self-concepts of 

adolescent students using the SDQ instruments for different age groups. He found a decline 

in students’ ASC from preadolescence to early and middle adolescence until about Grade 8 

or 9 at which point it levels out; then students’ ASC increases in Grades 10 and 11 and 

continues to increase during late adolescence and early adulthood. Yeung (2011) had similar 

results showing lower student ASC in higher grade levels. This overall trend is similar for 

both male and female students, and is reasonably consistent across different dimensions of 

self-concept. As students grow older, they incorporate more information about their actual 

skills and abilities (based on their performance), performance feedback from others, as well 

as other external criteria (like comparing their abilities with those of others) into  their self-

concepts in different domains, making their ASCs more stable, reliable and realistic (Marsh 

et al., 1999). They are also better able to make distinctions between their cognitive and 

affective components of ASC (Marsh et al., 1999; Yeung, 2011).  

2.B.5.7. Big-Fish-Little-Pond Effect (BFLPE) 

The BFLPE is a theoretical model based on research findings showing that students 

who are in high-ability learning environments (e.g., selective class or school settings) have 

lower ASC than their equally able counterparts educated in low- and average-ability 

environments. The BFLPE model posits that although individual ability is positively related to 

ASC, average ability within one’s school is negatively associated with ASC (Marsh, 1987). 

According to this model, one’s ASC partly depends on one’s own ability and partly on the 

ability of other students in one’s school. If an average student is placed in a high-ability class, 

social comparisons can make the student feel less adequate, resulting in a low ASC. In contrast, 

if placed in a lower-ability class, the student may hold a higher ASC. This is in line with the 
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I/E frame of reference model (Marsh, 1986) and the claim that students’ ASC is developed 

through their interaction with the environment and with other students (Shavelson et al., 1976).  

Since BFLPE was first introduced by Marsh (1987), there has been a growing body of 

research demonstrating the detrimental effects of ability grouping in education systems (e.g., 

Seaton, Marsh, & Craven, 2009). BFLPE appears to be evident across cultures and nations 

(Seaton et al., 2009), so it should be seriously considered when choosing a suitable learning 

environment for a student. Choosing a learning environment that is too competitive for students 

may lead to lowered ASC, which has detrimental effects on future achievement and other 

academic and non-academic outcomes.  

2.B.6. Conclusion 

ASC refers to students’ self-views in school curriculum domains. This chapter has 

discussed the conceptualization of ASC and the major instruments used to measure ASC. It has 

also synthesized some important findings from four decades of self-concept research, most of 

which have profound practical implications for theory and practice in education. Although 

many researchers still operationalize ASC as perceived competency, many researchers now 

differentiate between cognitive (competency) and affective (interest) components of ASC. 

Students’ ASC is also domain specific. Students with a high ASC in math may not have a high 

ASC in English. The effects of an intervention in math are unlikely to transfer to unrelated 

domains such as history.  

ASC and academic achievement are mutually reinforcing (i.e., REM), and such 

reciprocal relations are also domain specific. By improving students’ math ASC, we may 

improve their subsequent achievement in math, but not in unrelated domains such as English. 

Apart from their own achievement, students’ ASC is also influenced by their perceptions of 

peers’ achievement. Internal and external comparisons work simultaneously to shape students’ 

ASC in a particular domain. Hence, students who perceive their ability in math to be superior 
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to their peers’ ability are likely to be high in math ASC, but their high math ASC may lower 

their ASC is an unrelated academic domain such as English. I/E comparison patterns may vary 

depending on how closely the domains in question are related. For domains sharing similar 

characteristics or requisite skills, it is likely that achievement in one domain will be positively 

related to ASC in the other domain. As math and physics are highly interrelated, by increasing 

achievement in math, we may predict subsequently increased ASC in physics.  

Social comparisons not only lead to I/E predictions but also BFLPE. If students 

compare themselves with high-ability peers who thrive in every academic domain, they are 

likely to feel that they are academically inadequate, resulting in a low ASC. Educators need to 

be aware of the detrimental effects of such social comparison especially in highly selective 

educational environments such as gifted and talented settings, selective schools, etc. Students 

in such settings may need special guidance and counseling. 

2.B.6.1. Recommendations for the Application of ASC Theory and Research  

A positive ASC has been associated with higher occupational and educational 

aspirations, university attendance, course selection, and achievement as well as educational 

attainment levels (e.g., Marsh & Craven, 2006), and should therefore be promoted. Based on 

ASC research findings and recent advances in research, we would like to make the following 

recommendations.  

(1) Theory-based measurement. To assess students’ ASC, it is essential to use a 

validated measuring instrument with a sound theoretical underpinning. Depending on the 

purpose of the measurement, measurement may be focused on the students’ sense of 

competency or affect toward learning. 

(2) Competency and affect. Educators need to identify the focus of intervention 

and choose to target competency as the focus, if the target is to improve achievement and 

performance outcomes. For long-term outcomes, affect should be the focus. A focus on both 
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is naturally ideal, but not always feasible given constraints in resources and time. A focus on 

one at a time for achieving specific educational outcomes would be more cost-effective. 

(3) Domain specificity. Educators need to identify the focus of intervention and 

choose the targeted domain to develop specific strategies for best effects. For example, if a 

school wants to improve students’ academic achievement in math, then the intervention 

should target students’ ASC in math, and not in other unrelated domains. 

(4) Reciprocal effects. The reciprocal effects found between ASC and 

achievement imply that if schools want to improve either students’ ASC or academic 

achievement in a domain, both ASC and achievement have to be simultaneously targeted in 

any intervention. 

(5) I/E model. Practitioners in schools (including teachers and counselors) need to 

be aware of the social comparisons affecting students’ development of ASC. This awareness 

needs to be extended to parents and caregivers, who can provide useful feedback and 

guidance to students to help them develop realistic ASC based on their individual talents 

instead of social comparisons. Emphasis should be placed on enhancing students’ positive 

view about themselves.  

(6) Interrelatedness. Teachers in a specific domain may make use of students’ 

ASC in another domain to optimize learning. For example, by enhancing students’ ASC and 

achievement in math, students’ are more likely to benefit also in a related domain such as 

physics in higher school grade levels. Strategically promoting verbal ASC and achievement 

will positively impact the ASC of interrelated subject areas such as history and geography.  

(7) BFLPE. Social comparisons not only lead to I/E predictions but also BFLPE. 

Students in competitive schooling environments are affected by the BFLPE as a 

consequence of comparing with others. Students in a high-ability environment should be 
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made to be aware of and to appreciate their own strengths and their peers’ and be guided to 

build on these strengths instead of feeling crushed by the success of their peers.  

2.B.6.2. Further Research 

Despite the extensive studies on ASC, there are still gaps that need to be further 

addressed. For example, even though recent research has shown the distinctiveness of the 

cognitive and affective components of ASC, the majority of studies on ASC simply assessed 

the cognitive component of ASC instead of both. Drawing conclusions on ASC based on the 

competency component only will limit the contribution of ASC to educational outcomes. 

Future research should include the affective component of ASC to gain more knowledge about 

its role in contributing to a variety of outcomes. For the few existing studies that also 

investigated the affective component, they did not include a wide range of educational 

outcomes beyond achievement and educational choices, to better test the predictability of the 

affective component. Including a wider range of educational outcomes, academic and non-

academic, will better inform practice. Another major gap is that the major findings on ASC 

have been derived from separate studies. Research is needed to test and replicate all these 

major findings altogether on specific groups of students to ascertain that the theory holds true 

when all hypotheses are tested in the same study. Such research will reinforce the claim of 

replicability of ASC studies.  

All in all, the findings in ASC research have shown that promoting positive ASC for 

both its competence and affect components is crucial to maximizing educational outcomes. 

Educational policy makers and practitioners should endorse and promote students’ positive 

ASC to help them gain optimal benefits from their learning environment.  
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Section C:                                                                                                                         

The Juxtaposition of Cognitive and Non-Cognitive Aspects of Learning – 

Innovative Cognitive Practices and Motivational Factors 

 

“Orientation of motivation concerns the underlying attitudes 

and goals that give rise to action—that is, it concerns the why of actions”                                                                                                     

(Ryan & Deci, 2000, p. 54) 

   

2.C.1. Innovative Cognitive Practices 

Most science lessons around the world are still being delivered in the traditional 

teacher-centered talk-down approach (Andres, Steffen, & Ben, 2010). As research has pointed 

to the ineffectiveness of such traditional pedagogy (Wieman, 2007), there have been attempts 

to innovate science learning.   Recent innovation in science instruction tends to focus on 

authentic learning tasks (Merrill, 2002; van Merriënboer & Kirschner, 2001) using minimally 

guided approaches such as inquiry learning (McDermott, Shaffer, & Rosenquist, 1996; Riga, 

Winterbottom, Harris, & Newby, 2017; Van Booven, 2015), discovery learning (e.g., Anthony, 

1973), experiential learning (Boud, Keogh, & Walker, 1985), problem-based learning (e.g., 

Schmidt, 1983), and constructivist learning (Duit, 1996). Researchers have suggested that such 

instruction helps students to: integrate the scientific knowledge, science experimental skills, 

and develop scientific attitudes necessary for optimal science performance; provide 

opportunities to develop and coordinate essential skills that are required for optimal science 

performance; and eventually enable knowledge transfer to everyday life or work situations 

(Riga et al., 2017). Learning science through such instruction is exciting but risky to young 

students who lack pre-existing knowledge in the domain, as they may become overwhelmed by 
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the complexity of the learning tasks, and experience cognitive overload resulting in impaired 

learning (Kirschner, Sweller, & Clark, 2006).  If students are unable to understand the 

underlying concepts in the science learning tasks, then motivation could be lost (Palmer, 2005). 

As stated by Niemiec and Ryan (2009), “students will only engage and personally value 

activities they can actually understand and master” (p. 139). When students repeatedly 

encounter difficulties in tasks due to cognitive overload and subsequently experience failure, it 

lowers their sense of competence in that domain (Yeung, Kuppan, Foong et al., 2010). 

Therefore, it is critical that students’ learning be scaffolded at the initial stages to ensure that 

learning tasks are within students’ capabilities and level of pre-existing knowledge (Kadir, 

Ngu, & Yeung, 2015; Riga et al., 2017). When instruction is within the capacity of the working 

memory, students are able to construct schemas and learn more easily (Sweller et al., 2011). 

This results in higher academic success, which in turn, builds up students’ sense of competence 

(Marsh & Craven, 2006) and motivation (Ryan & Patrick, 2001), which can be further 

enhanced in a learning environment which also fulfills students’ basic psychological needs of 

competence, autonomy, and relatedness (Deci & Ryan, 2000). Figure 2.7 illustrates this 

phenomenon.  
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Figure 2.7. An illustration of students’ science learning environment. 

2.C.2. Non-cognitive aspects of learning 

Students’ academic behavior and achievement are often found to be closely associated 

with their motivation in schoolwork (e.g., McInerney & Ali, 2006). Pintrich, Marx, and Boyle 

(1993) emphasize that instructional models focusing only on cognition tend to neglect the 

inclusion of factors such as an individual’s goals, intentions, purposes, expectations, and needs. 

Schwedes (1973, as cited in Laukenmann et al., 2003) argued quite similarly when she 

criticized physics teaching for not sufficiently taking into consideration that students are 

‘young persons with a variety of interests, desires, experiences and feelings’ (p. 489). Hence, 

non-cognitive motivational factors such as basic psychological needs, academic self-concept, 

task goals, self-regulation, education, and career aspirations were also considered and 

measured in the research studies. Researchers have demonstrated that students’ motivation and 

self-beliefs can significantly influence essential academic outcomes (e.g., McInerney, Yeung, 

& McInerney, 2001).  These findings were based on research from various perspectives and 

theories, including expectancy-value theory (Wigfield & Eccles, 2000), goal theory 

(McInerney & Ali, 2006), and self-related frameworks such as self-concept (Marsh & Craven, 

2006) and self-determination theory (Ryan & Deci, 2000, 2017).  
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2.C.2.1. Basic Psychological Needs in Self-Determination Theory 

The concept of basic psychological needs is central to self-determination theory (SDT; 

Deci & Ryan, 1985; Ryan & Deci, 2017). SDT is a macro-theory of human motivation, 

emotion, and personality developed by Edward Deci and Richard Ryan and has been widely 

used to explain motivational behaviors for the past 40 years. Basic psychological needs theory, 

a sub-theory of self-determination theory, proposes that everyone has three innate basic 

psychological needs: competence, autonomy, and relatedness, which are collectively the 

driving force behind motivated behaviors (Vansteenkiste, Niemiec, & Soenens, 2010) and 

nutriments for optimal functioning (Deci & Ryan, 2000). Competence is the feeling of being 

capable and effective rather than feeling inadequate in one’s actions (Niemiec & Ryan, 2009). 

Autonomy is the feeling of doing something because one chooses to, such that one’s action is 

self-determined and volitional (Deci & Ryan, 1985), as opposed to feeling pressured or coerced 

to do so (Ryan & Deci, 2016). Relatedness is the feeling of being connected to others and 

having meaningful relationships, rather than feeling ostracized or left out (Deci & Ryan, 2000). 

In the educational context, the support of students’ basic psychological needs is associated with 

positive motivational and educational outcomes such as intrinsic motivation and autonomous 

types of extrinsic motivation, academic engagement and better learning. In contrast, and the 

thwart of students’ basic needs is associated with negative motivational and educational 

outcomes such as academic disengagement and poorer learning (Ryan & Deci, 2017). “SDT 

maintains that, when students’ basic psychological needs for autonomy,  competence, and 

relatedness are supported in the classroom, they are more likely to  internalize their motivation 

to learn and to be more autonomously engaged in their learning” (Niemiec & Ryan, 2009, p. 

139). Therefore, it is essential to create a learning environment which allows students to satisfy 

their basic psychological needs in order to enhance their motivation and optimize their 

learning.  
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2.C.2.2. Motivation 

Motivation research in the last few decades has generated a number of theories (e.g., 

self-determination theory, expectancy-value theory, goal theory, socio-educational theory, etc). 

In this thesis, I mainly focus on self-concept research and self-determination theory (SDT; Deci 

& Ryan, 1985; Ryan & Deci, 2017) to explain student motivation.  

“To be motivated means to be moved to do something” (Ryan & Deci, 2000, p. 54). As 

established by numerous motivational studies including those in SDT, individuals vary not 

only in the level or amount of motivation, but also in the orientation of that motivation (i.e., 

motivation type) (Ryan & Deci, 2000). According to SDT, types of motivation can be broadly 

categorized as autonomous or controlled, both of which energize and direct behaviors in 

different ways (Deci & Ryan, 2008). When individuals are autonomously motivated, they 

experience volition, or a self-endorsement of their actions (Ryan & Deci, 2016). In contrast, 

those who experience controlled motivation are compelled to think, feel, or behave in specific 

ways (Deci & Ryan, 2008). Each category of motivation can be subdivided into various forms 

of motivation and expressed on a continuum of relative autonomy (Figure 2.8, adapted from 

Ryan & Deci, 2000). In this continuum intrinsic motivation (i.e., most self-determined 

behavior) is placed at one end of the continuum and amotivation (i.e., lack of motivation and 

intention) is at the opposite end (Ryan & Deci, 2000).  Intrinsic motivation (the most 

autonomous form of motivation) is associated with activities that individuals personally choose 

to participate in (in the absence of external stimulus), because they find the activities 

interesting and enjoyable (Ryan & Deci, 2016). Next on the continuum is extrinsic motivation, 

which is subdivided into various forms of regulation beginning from more autonomous to more 

controlled motivation. Integrated and identified regulations are forms of extrinsic motivation 

which are considered autonomous because individuals have identified with an activity’s value 

and ideally will have integrated it into their sense of self (Ryan & Deci, 2016). Simply put, 
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they do something willingly because they see the value in doing it. Introjected and external 

regulations are forms of extrinsic motivation which are identified as controlled (Ryan & Deci, 

2000). Individuals who experience introjected regulation have partially internalized their 

behavior but are mostly energized by factors such as ego-involvements, approval motive, and 

avoidance of shame (Deci & Ryan, 2008). Those who experience external regulation do 

something because of “external contingencies of reward or punishment” (Deci & Ryan, 2008, 

p. 182).   

 

Figure 2.8. The continuum of human motivation types, adapted from Ryan & Deci (2000). 

 

As shown by Deci, Koestner, and Ryan (1999), both basic psychological needs for 

competence and autonomy need to be satisfied in order to sustain intrinsic motivation in 

individuals. Competent students believe they can meet the challenges in their learning tasks 

and autonomous students willingly devote their time, energy and effort into their learning 

(Niemiec & Ryan, 2009). Relatedness is not always necessary for intrinsic motivation as 

students are able to engage in intrinsically motivating tasks on their own without the need of a 

support group. However, relatedness is a prerequisite of internalization. Students who feel a 
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sense of relatedness to a group are more likely to internalize the values and beliefs of that 

group (Gagne & Deci, 2005; Vansteenkiste et al., 2010). Nevertheless, the interpersonal 

support received from the group has to be autonomy-supportive in order for the need of 

relatedness to be satisfied; otherwise it is not considered as self-determined. In sum, 

competence and relatedness are important to the internalization process but autonomy-support 

is the key to fully autonomous behavior.  In Study 5 of this thesis, I will demonstrate a learning 

environment to support students’ basic psychological needs using strategies suggested by 

Niemiec and Ryan (2009):  

(1) Competence was enhanced by: teachers providing positive feedback that was 

constructive and providing optimally challenging tasks which were within 

students’ cognitive abilities; 

(2) Autonomy was enhanced by: providing students with an autonomy-supportive 

learning environment – by giving them opportunities to make decisions in their 

learning process, explaining the rationales behind the learning tasks, 

acknowledging students’ feelings about their learning experiences, and 

minimizing control and stress during learning; and  

(3) Relatedness was enhanced by: teachers conveying care, concern, and respect to 

students, and closely monitoring the students during teamwork to ensure that 

team members treated each other the same positive way as they were treated by 

the teachers.  

The extent to which the learning environment encourages autonomous motivation in students 

depends on the extent to which it satisfies students’ basic psychological needs. In order to 

measure the extent to which students’ basic psychological needs were met, different types of 

motivation related to science were measured as outcomes, namely interest (intrinsic 

regulation), educational and career aspirations (integrated regulation), task goal (identified 



CHAPTER 2: Literature Review 

 

69 

 

regulation), and ego (introjected regulation). Other outcomes of motivation measured were 

self-regulation, and sense of competence in science.  

2.C.2.3. Motivational outcomes 

As motivation is a multi-dimensional construct, a range of motivational outcomes were 

selected to measure student motivation. These outcomes were selected on the basis of past 

research on student motivation and covered several types of motivation from autonomous to 

controlled. The following section provides an overview of the variables used in the studies of 

this thesis. More details are given in the respective chapters where these variables were 

measured. 

2.C.2.3.1. Self-efficacy 

According to social cognitive theory, self-efficacy is defined as “people's beliefs about 

their capabilities to produce designated levels of performance that exercise influence over 

events that affect their lives” (Bandura, 1994, p.71). Bandura, Barbaranelli, Caprara, and 

Pastorelli (2001) theorized that students’ self-efficacy may influence their achievement goals, 

educational aspirations, as well as career aspirations. This is in line with Elliot’s (1999) 

‘hierarchical model of achievement motivation’ where he suggested that students’ self-efficacy 

could exert a direct effect on students’ achievement goals, which in turn influence students’ 

learning processes and outcomes.  

2.C.2.3.2. Self-regulation 

Numerous studies have examined the cognitive and motivational outcomes associated 

with self-regulated learning (e.g., Ryan & Deci, 2008). Students who reported high levels of 

self-regulation in a learning domain: (1) were rated by their teachers as being high on academic 

achievement (Grolnick, Ryan, & Deci, 1991), and (2) reported high levels of perceived 

competence and interest, as well as lower anxiety levels in the learning domain (Black & Deci, 
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2000). There are many variations and definitions of self-regulation in student learning. In this 

thesis, I have focused on the cognitive strategies that students use to learn and monitor their 

understanding of the learning materials (Zimmerman & Pons, 1986). Self-regulation is an 

important motivational outcome since students who are motivated will use several strategies to 

self-regulate their learning and monitor their understanding of the concepts.  

2.C.2.3.3. Engagement 

Cognitive engagement is a form of motivated behavior (Pintrich, Smith, García, & 

McKeachie, 1993). Research has shown that students who are cognitively engaged in their 

learning will persist in using a variety of cognitive strategies to complete learning tasks and 

develop skills for knowledge transfer (Pintrich et al., 1993). Engagement is thus a vital 

contributor towards quality learning and academic success (Skinner, Furrer, Marchand, & 

Kindermann, 2008). The engagement factor used in this thesis focused on the behavioral aspect 

of engagement as an outcome measure, defined in terms of students’ attention and participation 

in learning tasks and classroom activities during science lessons.  

2.C.2.3.4. Task goal orientation 

Achievement goal theory (Urdan & Maehr, 1995) defines goals as cognitive 

representations of the different purposes students may adopt for their learning in achievement 

situations (Ford & Nichols, 1991). Mastery goal orientations are believed to influence a range 

of cognitive, affective, and behavioral outcomes for children (Barker, McInerney, & Dowson, 

2002; Pintrich & Schunk, 1996; Robins & Pals, 2002). These mastery goal orientations may be 

conceptualized as task and effort goals separately (Yeung  & McInerney, 2005). In this thesis, 

the focus is on task goal. Students with a high task goal orientation tend to focus on learning, 

solving problems and developing their skills (Elliot & Dweck, 1988; Nicholls, 1989).  
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2.C.2.3.5. Aspiration 

According to SDT, the degree to which students’ basic needs for competence, 

relatedness, and autonomy are satisfied in a domain influenced their aspirations in that domain 

(Deci & Ryan, 2008). Students’ educational and career aspirations in physics are two important 

outcomes for measuring the success of science instruction. If instruction increases students’ 

desires to further their studies in physics and possibly choose a physics-related job, then the 

cognitive and non-cognitive theoretical underpinnings of the instruction processes could be 

applied to other areas of physics instruction in order to solve the declining enrolment and other 

issues surrounding physics education. 

2.C.2.3.6. Ego involvement 

Ego refers to one’s self-esteem being dependent on one’s performance, and in SDT, it is 

considered a type of introjected regulation (Ryan, 1982). When ego is involved, a student feels 

an internal pressure to perform in learning tasks so as to feel worthy or to avoid shame 

(Niemiec, Ryan, & Brown, 2008).  Since this motivation emanates from outside the self, such 

behavioral regulation is a form of extrinsic motivation, which is more controlled than 

autonomous (Niemiec & Ryan, 2009). In this thesis, the focus is on students’ ego in relation to 

their peers’ performance.  

2.C.3. Summary 

The main cognitive issues in physics education are the high levels of element 

interactivity during instruction that easily overload students’ working memory, while the main 

non-cognitive issues are the lack of motivation to learn physics and students’ lack of self-

concept. Figure 2.9 illustrates these issues. One way to overcome these issues is to address 

them simultaneously by merging strategies from both cognitive and motivational studies in 

education (i.e., implementing them in the same learning environment). 
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Figure 2.9. Overview of the main cognitive and non-cognitive issues in science education 

addressed in the thesis.  
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Section D:                                                                                                             

Overview of Thesis 
 

 

“… complex learning is a lengthy process requiring learners’ 

motivational states and levels of expertise development to be taken into account” 

(van Merriënboer & Sweller, 2005, p. 147) 

 

2.D.1. Thesis Aim 

The overarching aim of the research is to: (1) investigate the relations between the 

cognitive and non-cognitive factors of science education; and (2) design and implement an 

intervention to improve both the cognitive and non-cognitive learning outcomes of a physics 

instruction for Grade 7 students. To achieve this objective, five studies were carried out and a 

number of specific research objectives were met. 

2.D.2. Specific Research Objectives 

Study 1: Simultaneous Testing of Four Decades of Academic Self-Concept Models 

1. Review the evidence and form hypotheses from self-concept studies on the 

relationships between academic self-concept and achievement,  

2. Identify knowledge gaps in the studies and include these in the hypotheses, and 

3. Test hypotheses on a sample of Grade 7 students using structural equation modelling 

and identify the relations between student achievement and their academic self-

concept. 
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Study 2: School Achievement and Science Motivation during the Primary-Secondary 

School Transition  

1. Evaluate the psychometric properties of the psychological constructs to demonstrate 

that the instrument used is a valid and robust measure of the constructs under 

investigation, and 

2. Investigate the relations between student achievement and motivatinal attitudes 

before and after transition from primary to secondary school (i.e., Grade 6 to 7) to 

see if there is an association between Grade 6 achievement and Grade 7 motivation. 

 

Study 3: Element Interactivity as a Construct for the Analysis of Science Problem      

               Solving Processes 

1. Analyze science word problem in terms of element interactivity to determine the 

level of complexity, 

2. Analyze students’ science problem solving processes in terms of operational lines to 

deduce the element interactivity and infer students’ level of expertise in science 

problem solving, and 

3. Investigate the relations between element interactivity and student achievement. 

 

Study 4: Effects of Managing Element Interactivity on Student Achievement and their 

    Academic Self-Concept                                                          

1. Design and implement an intervention that manages element interactivity during 

science instruction, and 

2. Measure the effect of the intervention on student achievement and self-concept in 

science.  
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Study 5: Effects of a Dual-Approach Instruction on Students’ Science Achievement and                                                

               Motivation 

1. Apply the findings from studies 1-4 to design and implement an intervention that 

manages element interactivity during science instruction in a learning environment 

that provides for learners’ basic psychological needs (i.e., dual-approach instruction 

which supports students’ learning processes and seeks to enhance their motivation), 

and 

2. Measure the effect of the intervention on student achievement and psychological 

factors.   
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Chapter 3: Study 1 -                                                                                

Simultaneous Testing of Four Decades of Academic Self-Concept Models 

 

 

 

Note. This chapter has been published as a journal article in a top-tier peer-reviewed journal: 

Contemporary Educational Psychology. Permission to present the final draft of this study in 

this thesis has been obtained from the journal.  

 

 

 

Kadir, M. S., Yeung, A. S., & Diallo, T. M. O. (2017). Simultaneous testing of four decades of 

academic self-concept models. Contemporary Educational Psychology, 51, 429-446. 
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Simultaneous Testing of Four Decades of Academic Self-Concept 

Models 

 

3.1. Preface 

With emphasis on the importance of addressing both cognitive and motivational aspects of 

learning so as to optimize students' potentials, a series of studies was conducted to examine the 

interplay between cognitive and motivational variables. There has been extensive research 

showing that academic self-concept plays a critical role in determining academic outcomes such 

as achievement, but whether this applies similarly across various curriculum domains and for 

different components of self-concept needs further exploration. Study 1 starts by reviewing the 

findings of self-concept research for the last 4 decades and scrutinizing the associations between 

students' achievement (cognitive) and self-concept (motivational) aspects of learning found in 

the literature. The study is the first to test the five main findings in self-concept research to date 

in a single study covering three curriculum domains (English, mathematics, and physics) across 

three time waves. It also contributes to new knowledge by including the affective component of 

academic self-concept which has long been neglected. The findings will (1) show the 

replicability and applicability of self-concept studies, (2) elaborate on the role of academic self-

concept in contributing to student achievement, and (3) guide intervention strategies to enhance 

students’ academic self-concept in schools.  
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3.2. Abstract 

In separate studies on academic self-concept, previous research has shown: (1) the 

distinctiveness of a cognitive and an affective component, (2) the domain specificity of 

self-concepts, (3) the reciprocal effects of self-concept and achievement, (4) the 

internal/external frame of reference in self-concept development, (5) the reciprocal effects 

of the internal/external frame of reference, (6) the big-fish-little-pond-effect, and (7) the 

interrelatedness of self-concepts in similar domains. The present study demonstrates that 

all of these seven findings are replicable and may be synthesized in a single study with a 

sample of students in Singapore. Secondary 1 students (7th graders; N = 275) were 

surveyed with 24 items about their academic self-concepts in physics, English, and math in 

two components (cognitive and affective), and their respective achievement scores were 

recorded over two time-points. Confirmatory factor analysis found that the cognitive and 

affective components of academic self-concept were separable. The students’ self-concepts 

in different curriculum domains were distinct, supporting the domain specificity of self-

concepts. The frame of reference and reciprocal effects were both supported, but only for 

the cognitive component of self-concept. Positive and statistically significant correlations 

between physics and math suggest that these curriculum domains were interrelated. 

Results of self-concept studies in schools can encourage and guide the design of 

interventions that could enhance students’ self-concept for positive sustainable effects on 

desirable educational outcomes. Attempts to improve learning outcomes should emphasize 

an enhancement of specific components of academic self-concept in domain-specific and 

related curriculum domains for optimal effects. 
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3.3. Introduction 

Student self-concept in a school curriculum domain (e.g., science, English or math 

subjects) is commonly known as academic self-concept (ASC) (Kadir & Yeung, 2016). 

Students with a positive ASC feel good about their academic ability and are likely to 

achieve well in school (Guo, Marsh, Parker, Morin, & Yeung, 2015; Kadir & Yeung, 

2016, Kadir, Yeung, & Barker, 2013, Marsh, Xu, & Martin, 2012). Apart from academic 

achievement, a host of other important academic outcomes (e.g., academic and career 

aspirations, coursework selections, self-regulated learning strategies, positive self-beliefs 

and motivation) have been found to be substantially related to students’ ASC (Guo, Marsh 

et al., 2015; Guo, Parker, Marsh, & Morin, 2015; Marsh, 1993, 2007; Yeung, Craven, & 

Kaur, 2012; Yeung, Kuppan, Foong et al., 2010). ASC studies over the past four decades 

have also yielded important findings leading to the formulation of many ASC models such 

as the separation of the cognitive and affective components of ASC (Arens, Yeung, 

Craven, & Hasselhorn, 2011; Marsh, Craven, & Debus, 1999), the domain specificity of 

ASC (Marsh & Yeung, 1997), the reciprocal effects model (REM; Marsh & Craven, 

2006), and social comparisons leading to the internal and external frame of reference (I/E; 

Marsh, 1986, 2007) model influencing the development of ASC, which also has reciprocal 

effects (RI/EM; Möller, Retelsdorf, Köller, & Marsh, 2011) and has led to the big-fish-

little-pond-effect (BFLPE; Marsh, 1987), as well as the contrast and assimilation effects or 

interrelatedness of curriculum domains (Xu et al., 2013). 

Even though ASC studies have spanned over decades, there are several gaps that 

still exist in the research. First, ASC models have been developed in isolation. The 

disparate testing of selective hypotheses is far from the golden standards of scientific 

research (American Educational Research Association, 1999). Integration and 
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simultaneous testing of the ASC models in a single study will make the conclusions 

more robust (Santer, Wigley, & Taylor, 2011) and serves to further ASC researchers’ 

claims to represent a pan-human phenomenon. The summative results of all the findings 

would also make it easier for practitioners and researchers to see the implications of the 

findings holistically and consider the interactions among the different findings when 

formulating policy and practice. Second, most researchers have focused on the cognitive 

component of ASC, whereas the affective component of ASC has mostly been ignored. 

Investigating the affective component is just as critical, in order to understand its role in 

educational settings. Third, researchers have not distinctly explored the physics ASC of 

Grade 7 students as most Grade 7 students around the world study general science and 

not physics as a separate subject or module. Understanding students’ physics ASC at an 

early age and its relations to the other variables is important to help address the 

challenges students face in that curriculum domain.  

These research gaps have been addressed in the present study. Firstly, the findings 

of past large-scale ASC studies were reviewed and reinforced, then developed into seven 

hypotheses to investigate whether they are replicable in this particular group of students in 

Singapore. The importance of replication and reproducibility of studies is well-recognized 

by scientists and researchers because replicable data can lead to robust conclusions (Santer 

et al., 2011). Jasny, Chin, Chong, and Vignieri (2011) also shared the value of replicating 

past work by stating that “replication – the confirmation of results and conclusions from 

one study obtained independently in another – is considered the scientific gold standard” 

(p. 1225). 

Using ASC and academic achievement measures in physics, English, and math, the 

seven hypotheses investigated were the: (1) distinctiveness of the cognitive and affective 
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components of ASCs, (2) domain specificity of ASCs, (3) reciprocal effects model (REM), 

(4) internal/external (I/E) frame of reference model, (5) reciprocal internal/external frame 

of reference model (RI/EM), (6) big-fish-little-pond-effect (BFLPE), and (7) 

interrelatedness of ASCs in similar domains. If all seven hypotheses can be supported in a 

single study with the given sample of students, it would provide a comprehensive 

overview supporting the replicability of ASC studies and the rigor of the ASC models. By 

taking all the findings into consideration, it could also better facilitate the design of a 

holistic ASC enhancement intervention encompassing the various themes discussed in the 

study. Secondly, we tested all the hypotheses for both the cognitive and affective 

components of ASC, giving additional perspectives and expanding implications to past 

ASC findings. Thirdly, we investigated Grade 7 students’ physics ASC. As most Grade 7 

students around the world study general science (as physics is usually introduced into the 

curriculum at Grade 9 and beyond) and would develop physics ASC only when they are 

older, the findings of this study would be valuable for researchers planning to conduct 

longitudinal studies on students’ ASC in physics.  

3.3.1. Theoretical framework 

3.3.1.1. The Cognitive and Affective Components of Academic Self-Concept 

Within a specific curriculum domain, researchers have considered the separation of 

two major components of ASC: the cognitive and affective components (Arens et al., 

2011; Marsh, Craven et al., 1999). The cognitive component taps on students’ self-

perceived competence in the domain (e.g., sense of competence in physics or students’ 

own judgement of their academic ability in physics), whereas the affective component is 

concerned with students’ affective-motivational reactions toward the domain (e.g., how 

much students like physics and enjoy physics lessons). There are an increasing number of 
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researchers who have operationalized the ASC construct as two distinct factors as they 

have shown that the cognitive and affective components of ASC can be distinguished from 

each other (Arens et al., 2011; Arens, Bodkin-Andrews, Craven, & Yeung, 2014; Marsh, 

Craven et al., 1999; Pinxten, Marsh, De Fraine, Van Den Noortgate, & Van Damme, 

2014), even for young students in elementary schools (Arens & Hasselhorn, 2015). Arens 

et al. (2014) highlighted the importance of distinguishing between the cognitive and 

affective components of ASC in order to better understand student differences (e.g., are the 

differences in ASC between groups of students the result of their beliefs about their 

abilities or their feelings about specific domains?). Other researchers have shown that 

distinguishing between the cognitive and affective components of student ASC helps in 

designing more specific interventions to target different academic outcomes as they are 

found to be predictors of different outcomes. Students’ high sense of competence 

(cognitive), for example, is known to lead to positive achievement outcomes (e.g., Marsh 

& Scalas, 2010), whereas students with a strong liking (affect) in a domain are found to 

persist in challenging learning tasks (e.g., Elliot & Church, 1997). Given the differential 

predictions of the cognitive and affective aspects of academic motivation on educational 

outcomes as suggested by Yeung et al. (2012), the separate consideration of the cognitive 

and affective components is likely to benefit more efficient and targeted intervention 

approaches.  

Although Marsh, Craven et al. (1999) and Arens et al. (2011) have demonstrated 

that the cognitive and affective components of ASC are distinguishable from each other, 

they have not tested whether each ASC component in a curriculum domain is related to the 

same component in another curriculum domain or not (e.g., competence in physics could 

be unrelated to competence in English; affect in physics could be unrelated to affect in 
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English). This would provide a much stronger scrutiny of the distinctiveness of these 

constructs. For a thorough scrutiny of the cognitive and affective components of ASC, and 

for the separation of the two components to be practically useful, a test of the respective 

relations of each component with domain-specific outcome variables (e.g., achievement 

scores) would be required. To this end, it would be useful to demonstrate the positive 

relations between predictors and outcomes within domains and non-positive relations 

across domains.  

One of the purposes in the present study was to provide rigorous scrutiny of the 

distinctiveness of the two components of ASC and their domain-specific relations with 

outcome variables. In this investigation, we focused only on the broad conceptualization of 

the cognitive (sense of competence), and affective (the extent of liking physics) 

components regarding lower secondary physics, which has not been well-researched, in 

addition to two other well-researched domains: English and math. 

3.3.1.2. Domain Specificity of Academic Self-Concepts 

The domain specificity of ASCs has been established by many researchers (e.g., 

Marsh & Craven, 2006; Yeung, Kuppan, Foong et al., 2010; Yeung & Lee, 1999). That 

is, students can clearly differentiate their ASCs in various curriculum areas (e.g., 

English, math, etc). In the school context, a positive ASC can contribute to important 

educational outcomes, but the relation between achievements and ASCs are known to 

be significant only within specific domains (Marsh & Yeung, 1997; Möller et al., 2011; 

Yeung et al., 2012; Yeung & Lee, 1999). Thus, research on ASC has emphasized its 

domain-specific nature (Arens et al., 2011; Marsh, Kong, & Hau, 2001). The emphasis 

has also led to the development of instruments that measure self-concepts in distinct 

areas (e.g., Dillon, 2011; Marsh, 1992, 1993).  
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Whereas much research has been conducted on the domain specificity of math and 

verbal ASCs, little is known about the domain specificity of Grade 7 physics, especially for 

students learning physics as a separate module from science for the first time in school. In 

the current study, we assessed the domain specificity of ASC in Grade 7 physics, a 

curriculum domain which has not been thoroughly explored in ASC research. By 

juxtaposing physics with English and math which have attracted much attention, and 

comparing their relations with patterns from previous ASC studies, we would be able to 

test the generalizability of domain specificity across the three domains, for both the 

cognitive and affective components of ASC. 

3.3.1.3. Reciprocal Effects Model (REM) 

The heed for the simultaneous enhancement of content proficiency and ASC in 

respective domains is grounded upon the reciprocal effects found between achievement 

and the cognitive component of ASC (i.e., sense of competence). The reciprocal effects 

model (REM) proposed by Marsh, Byrne, and Yeung (1999) maintains that achievement 

and students’ sense of competence are mutually reinforcing such that higher achievement 

would lead to a higher sense of competence and a high sense of competence would further 

lead to higher achievement (see Marsh & Craven, 2006; Marsh & O'Mara, 2008).  

Consistent with the domain specificity findings of previous research, the mutually 

reinforcing relation is also found to be domain specific. That is, students who achieve well 

in math would tend to have a high sense of competence in math, which would 

subsequently lead to higher achievement in math, but not necessarily in other curriculum 

domains.  

So far, the research testing the reciprocal effects between achievement and ASC 

has focused mostly on the cognitive component and has not thoroughly examined the 
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affective component of ASC. Based on past research findings (Marsh & Craven, 2006; 

Yeung, Kuppan, Foong et al., 2010), we may envisage that the reciprocal effects would 

be more apparent for the cognitive component (i.e., how competent I am in physics) 

than for the affective component (i.e., how much I like physics). In other words, the 

affective component may not have direct bearing to achievement; at least not as much as 

would a sense of competence. In the present study, we tested the reciprocal effects 

between achievement and both components of students’ ASC in physics, English, and 

math curriculum domains.  

3.3.1.4. The Internal/External Frame of Reference Model (I/E Model) 

The emphasis on domain specificity of ASC came primarily from the consistent 

findings of distinct ASC factors and their domain-specific relations to other factors. 

Specifically, studies have found a non-positive (often near-zero) correlation between 

students’ verbal and math ASCs (e.g., Marsh, Byrne et al., 1999; Marsh, Byrne, & 

Shavelson, 1988) although the correlation between verbal and math achievements is 

usually high.  To explain such a phenomenon, Marsh (1986) proposed an internal-external 

frame of reference (I/E) model, to show that the development of students’ ASC in a 

particular curriculum domain is primarily based on an internal comparison (i.e., comparing 

their self-perceived ability in the curriculum domain with their self-perceived ability in 

other curriculum domains) as well as an external comparison (i.e., comparing their self-

perceived ability in that curriculum domain to their perceived ability of their peers in the 

same domain). For example, students are likely to have a high English ASC if they 

perceive that their ability in English is better compared to the rest of their curriculum 

domains (i.e., internal comparison) and also believe they have a high ability in English 

relative to their peers (i.e., external comparison).  
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The internal frame of reference initiates a dimensional comparison process such 

that achievement in one curriculum domain has a negative effect on ASC in a dissimilar or 

non-corresponding domain (Möller & Marsh, 2013). For example, a high-ability student 

with high achievement in all domains (hence the positively significant correlations 

between achievements) may have a low math competence if he scored worst in math 

relative to other dissimilar domains such as English, or other languages (Arens et al., 

2011). Despite his good math achievement, he perceived his math ability to be worst (thus 

the low math ASC) due to his higher achievement in other dissimilar domains such as 

English (thus the high English ASC). This resulted in the low or negative correlations 

between achievement and ASCs of dissimilar domains. The internal comparison process 

between math and verbal domains has been widely supported by experimental, 

longitudinal, and cross-cultural studies (e.g., Marsh, 2007; Möller & Marsh, 2013; Möller, 

Pohlmann, Köller, & Marsh, 2009).  

The external comparison is a process where students’ ASC in a domain was 

developed from the information they garnered from social comparisons: comparing their 

achievement in the domain with the achievement of their peers in the same domain. For 

example, if a student’s English achievement is higher that his classmates', his English ASC 

will also be higher. As students’ achievement across domains are typically positively 

correlated, it seemed reasonable to assume that the processes of external comparisons have 

led to domain-specific ASCs which are also positively correlated (Möller, Streblow, 

Pohlmann, & Köller, 2006).  

In sum, the I/E model hypothesizes that the combined operation of both the internal 

and external comparisons, depending on the relative weighting given to each, would lead 

to the low correlation between ASCs (i.e., sense of competence) in dissimilar domains 
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(Marsh, 1986, 2007; Marsh et al., 2012). The I/E model also predicts positive effects of 

English and math achievement on English and math ASCs, respectively but negative 

effects of English achievement on math ASC and math achievement on English ASC, 

where ASC refers to the cognitive component (i.e., sense of competence). Researchers 

have replicated the patterns of the I/E model in various cultural and language backgrounds 

(e.g., Marsh et al., 2001; Möller et al., 2011; Xu et al., 2013, Yeung, Chow, Chow, Luk, & 

Wong, 2004; Yeung & Lee, 1999). The I/E model has provided an important framework 

for examining the domain specificity of ASC. However, studies that have further tested the 

I/E model with the affective component of ASC are lacking. By testing the differential 

relations between achievement and each of the components of ASC (i.e., competence and 

affect), we would be able to conduct a rigorous test of the internal and external comparison 

interpretation. Because the competence component involves more direct social 

comparisons than the affective component, we would expect the patterns obtained in I/E 

model to be more apparent for competence than affect. We attempted to contribute to the 

literature by addressing this issue in the present study.   

3.3.1.5. The Reciprocal Internal/External Frame of Reference Model (RI/EM) 

The reciprocal internal/external frame of reference model (RI/EM; Möller et al., 

2011; Möller, Zimmermann, & Köller, 2014) combines the internal/external frame of 

reference model and the reciprocal effects model. The RI/EM predicts positive effects of 

English and math achievement and ASC on subsequent English and math achievements 

and ASC within domains and negative effects of English and math achievements and ASC 

on subsequent achievements and ASC across domains. Similar to the reciprocal effects and 

the I/E models, the affective component of ASCs has not been thoroughly investigated. 

Therefore, in an attempt to further extend the model, we have included the affective 
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component of ASCs in each domain, and also added the physics domain, which has not 

been explored in past RI/EM studies. However, since we did not measure subsequent ASC 

after achievement at time 2, we did not test that part of the model.  

3.3.1.6. The Big-Fish-Little-Pond Effect (BFLPE) 

Another finding that has emerged from students’ frame of reference or social 

comparison is the big-fish-little-pond-effect (BFLPE, Marsh, 1987). The BFLPE is a 

theoretical model based on research findings showing that students who are learning in 

high-ability environments (e.g., selective school or class settings) have lower ASC than 

their equally able peers educated in average-ability or low environments. The BFLPE 

model posits that although individual ability is positively related to ASC, average ability 

within one’s school is negatively associated with ASC (Marsh, 1987). According to this 

model, students’ ASC partly depends on their own ability and partly on the ability of the 

other students in their learning environment. If an average student is placed in a high-

ability learning environment, social comparisons can make the student feel less adequate, 

resulting in a low ASC (Kadir & Yeung, 2016; Seaton, Marsh, & Craven, 2009). In 

contrast, the student may hold a higher ASC if placed in a lower-ability learning 

environment. The BFLPE is in line with the I/E frame of reference model (Marsh, 1986) 

and has shown to be evident across cultures and nations (e.g., Seaton et al., 2009).  

3.3.1.7. Interrelatedness of Academic Self-Concepts 

Whereas ASC research has emphasized domain specificity and multidimensionality 

(see Arens et al., 2011), the interrelatedness between ASCs in different but similar 

domains has not been vastly explored, especially in the Grade 7 curriculum domains of 

physics and math. In support of the domain specificity and multidimensionality of ASCs, 

Yeung et al. (2000) argued that the domain specificity of students’ ASCs depends on the 
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nature of the domain in question and how the domain is related or similar to other domains 

(also see Yeung, Chui, & Lau, 1999). Yeung et al. (1999) demonstrated that for curriculum 

domains that have a common focus (e.g., on commercial studies), students’ ASCs tended 

to be positively correlated with each other. Yeung et al. (2000) also argued that ASCs of a 

similar nature may not be as distinct from each other as would ASCs in clearly distinctive 

or dissimilar domains (e.g., math and verbal ASCs). The Marsh/Shavelson model (Marsh 

& Shavelson, 1985) suggests that ASC can be ordered along a math-verbal continuum. 

Marsh (1992) suggested that math and verbal ASCs are at the opposite ends of the ASC 

continuum because they have been found to have the greatest contrast effects (i.e., a 

negative effect between achievement and ASC across domains) (Möller & Marsh, 2013). 

Xu et al. (2013) found that curriculum domains that are further apart on the ASC 

continuum would have stronger contrast effects, but for domains that are closer together on 

the continuum, the patterns would vary from no significant effects or weaker contrast 

effects, to assimilation effects (i.e., positive effect of achievement in one domain on ASC 

of a similar domain).  

In the study by Möller et al. (2006), they found positive effects of physics 

achievement on math ASC and of math achievement on physics ASC. Their results 

showed that math and physics are interrelated. Therefore, we also expected that patterns of 

domain specificity would be less prominent between mutually relevant domains, hence 

supporting the interrelatedness hypothesis (i.e., assimilation effects). In a later study, 

Möller et al. (2009) posed the question as to whether students would perceive curriculum 

domains such as physics and math as sufficiently distinct such that better performance in 

one would lead to poorer ASC in the other (a contrast effect like that posited in the I/E 

model based on the math and verbal domains), or would the two curriculum domains be 
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perceived as sufficiently similar and related so that better performance in one domain (e.g., 

math) would lead to the enhancement of the ASC in the other (e.g., physics): an 

assimilation effect. A recent study by Marsh et al. (2015) tested math- and science-like 

domains (i.e., biology, physics and math) and listed them as ‘near’ domains which display 

positive cross-domain effects of achievement on the cognitive component of ASCs across 

these domains. 

In the present study involving the three curriculum domains - physics, English, and 

math - we hypothesized interrelatedness between physics and math. Math skills are known 

to be a tool necessary for the computations required in physics, so we would expect math 

and physics to be closer together on the ASC continuum, compared to between physics 

and English and between math and English. Specifically, the correlations between math 

and physics variables are expected to be larger than between English and math or between 

English and physics. The findings would provide a better understanding of students’ ASCs 

in similar domains that would enable educators to optimize ASC enhancement effects in 

different curriculum domains. While all the above studies to date have focused only on the 

cognitive component of ASC, we have extended the investigation to studying the 

interrelatedness of physics and math also with the affective component of ASC. 

3.3.2. The Present Study 

In the present study, secondary 1 students (i.e., 7th graders) in Singapore 

completed a survey regarding their ASCs in physics, English, and math in two components 

(competence and affect), and their achievement scores in the physics, English, and math 

domains at time 1 (before the ASC survey) and time 2 (after the ASC survey) were 

collected from the school. Assuming ASC studies and models are replicable, we expected 

support for the hypotheses, which are outlined in greater detail below.  
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Hypothesis 1. Distinctiveness of the cognitive and affective components of ASCs. In 

line with past studies (e.g., Marsh, Craven et al., 1999), we expected the cognitive and 

affective components of ASCs to be distinct from each other. Therefore, in the results, we 

would expect the model fit to be better for the model theorizing the separation of ASC for 

each domain into its cognitive and affective components, than the model theorizing a 

global ASC, which combines the cognitive and affective components of ASC of each 

domain into a single factor. We would also assume that the correlations between the 

cognitive and affective factors of ASCs would be high (showing interrelatedness, which 

were in line with previous studies) but less than 1, indicating that they are distinct factors. 

If the cognitive and affective factors of ASC are distinct from each other, we would also 

expect them to function differently, resulting in different correlations and paths, with the 

other variables. 

Hypothesis 2. Domain specificity of ASCs. Based on past studies (e.g., Arens et al., 

2011), we would expect to observe domain specificity in both the cognitive and affective 

components of ASC. Therefore, we assumed that the correlations among the latent 

variables of physics, English, and math ASCs, as well as the correlations between ASC 

and achievement would be positive and statistically significant within domains but weaker 

across domains, for both the cognitive and affective components of ASC. 

Hypothesis 3. Reciprocal effects model (REM). Based on previous findings (e.g., 

Marsh & Craven, 2006), we assumed that there are reciprocal effects between ASC and 

achievement and that it would be domain specific. Students with high achievement would 

have high ASC, which would lead to high subsequent achievement within the same 

domain.  We would therefore expect the structural paths from achievement at time 1 to 

competence and from competence to achievement at time 2 to be positive and statistically 
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significant within domains but not across domains, as found in past studies (e.g., Marsh & 

Craven, 2006). 

Hypothesis 4. Internal/external frame of reference (I/E) model. Past studies 

(Marsh, 1986; 2007) have implied that students develop their ASCs by internal and 

external comparisons. As a result of such comparisons, students with a high ASC in a 

domain would impede their ASC in a dissimilar domain, even if they have relatively 

similar achievement in both domains. Therefore, we would expect positive and statistically 

significant correlations between the achievements of different curriculum domains but 

statistically non-significant correlations or negative and statistically significant correlations 

between the ASCs of dissimilar domains. We would also expect the results to show 

positive and statistically significant structural paths from achievement to ASC within 

domains but not across dissimilar domains for the competence component, as found in past 

studies (e.g., Marsh, 2007).  

Hypothesis 5. Reciprocal internal/external frame of reference model (RI/EM). Past 

studies (e.g., Möller et al., 2011) have shown that there are reciprocal effects to the I/E 

model, resulting in the birth of RI/EM.  Since the RI/EM is a combination of the REM and 

I/E model, we would expect the structural paths from achievement to the competence 

component of ASC to subsequent achievement within domains to be substantially positive 

and statistically significant whereas the structural paths across dissimilar domains would 

either be statistically non-significant (Möller et al., 2014) or negative and statistically 

significant over time (Möller et al., 2011). As past studies on RI/EM (Möller et al., 2011; 

2014) involved the domains of English and math for the competence component of ASC 

only, we would expect the structural paths from English achievement to English 

competence and to subsequent English achievement to all be positive and statistically 
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significant, but the paths from English achievement to math competence and to subsequent 

English achievement to be statistically non-significant or negative and statistically 

significant.  

Hypothesis 6. Big-fish-little-pond-effect (BFLPE). Based on previous findings 

(e.g., Marsh, 1987), we assumed that students’ interactions with their learning 

environment influenced their ASC development. For example, an average student 

placed in a high-ability learning environment would develop lower ASC than his peer of 

similar ability placed in a lower ability learning environment. The study was conducted 

within one school, with no significant variation within and between Grade 7 classes in 

terms of average academic ability, so we would not expect to observe the BFLPE.  

Hypothesis 7. Interrelatedness of self-concept in similar domains. Past studies 

(e.g., Yeung et al., 1999) have shown interrelatedness between domains with similar 

characteristics, focusing on competence. Therefore, we would expect to observe positive 

and statistically significant correlations between similar domains (i.e., numerical domains 

such as physics and math) in ASCs as well as in achievement at time 1 and time 2. In 

contrast, we expect to observe negative and statistically significant correlations between 

dissimilar domains (i.e., English and math) in ASCs; and much lower correlations for 

achievement at time 1 and time 2 between these dissimilar domains. In line with past 

studies, we would also assume that the structural paths across similar domains (i.e., 

physics and math) would be positive and statistically significant, in contrast to negative 

and statistically significant structural paths across dissimilar domains as posited by the I/E 

model.  
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3.4. Method 

3.4.1. Participants 

There were altogether 100 boys and 175 girls from 12 different classrooms in a 

school in Singapore who participated in the study (N = 275; age range = 12.8 to 13.7 

years old). Students’ participation was voluntary and they were assured that their teachers 

would not be given any information about their responses. The consenting participants 

were all in the first year of secondary school (commonly known as ‘Grade 7’ or 

‘secondary 1’in Singapore) and formed 63% of the Grade 7 students in the school. There 

was no systematic difference between the students who volunteered for the study and 

those who did not, in terms of their demographics and academic abilities. Although all 

the students were Chinese by race (>75% of Singapore residents are of Chinese origin), 

all of them were effectively bilingual in English and Mandarin (i.e., Chinese language), 

as English is the national language (i.e., first language) of Singapore. About 52% of these 

Singapore students used English as their home language. Whereas 41% of the students 

spoke Mandarin and the remaining 7% spoke other Chinese dialects at home, English is 

becoming the major language the younger generation uses at home (see Li, Zhao, & 

Yeung, 2012). In Singapore, all students formally start learning English in pre-school. 

English is the medium of instruction in all government schools in Singapore, so all of the 

curriculum domains (e.g., math, science, geography, history, music, art) are delivered in 

English. Even though many of the student participants did not speak English at home, 

they spoke fluently in English with teachers and peers. They also had no problems 

understanding, reading and writing in English, as evidenced in their high achievement 

scores in English, feedback from their teachers, as well as with their interactions with the 

researchers.  
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At the end of Grade 6, students in Singapore have to take a national examination, 

known as the Primary School Leaving Examination (PSLE; see the Singapore 

Examinations and Assessment Board website, in National Examinations). Students in 

Singapore gain admission to secondary schools based on their PSLE score, which ranged 

from 0 to 300. The mean PSLE score for this sample of participants was 243. Therefore, 

when compared to the general secondary 1 cohort in Singapore, these participants were 

considered to have “higher than average” academic capabilities, judging from their better 

performance at the PSLE. Also, for this reputable school, only students with a score of 

about 240 were able to gain admission. These students’ academic ability, however, were 

not as high as those in what is known as the gifted program. There were students with 

lower PSLE scores who gained admission based on their achievements in sports, music, 

and the arts, for example, but these were very few. Therefore, the academic ability of the 

students was, on average, similar to one another, across and within classes, during the 

time of the study.  

3.4.2. Study Measures  

The students responded to a 24-item ASC survey on a six-point Likert scale (1 = 

strongly disagree to 6 = strongly agree). The survey was conducted at the end of the school 

year. The students responded to the survey items in a randomized order. The items were 

about two components of ASC (competence and affect) in three curriculum domains, 

respectively (physics, English, and math). For the competence items, students rated their 

academic ability in the domain. For the affect items, students rated their liking for the 

domain. The items (named PC1-4, PA1-4, EC1-4, EA1-4, MC1-4 and MA1-4 in Table 3.1 

and Appendix 3A) were adapted from well-validated instruments and randomized in the 

survey form. To avoid response bias, a few items were negatively-worded in order to 
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discourage students from selecting the same responses for the entire survey without 

reading each item. Since only the physics component of science was taught before and 

during data collection, only the students’ physics ASC was measured. Apart from these 24 

items, background variables such as age, gender, language background, were also used in 

the survey. These 24 items formed six ASC factors with maximal reliabilities ranging from 

.90 (for English competence) to .94 (for physics competence and math affect). These high 

reliabilities provided preliminary support for the factors. In addition to the ASC factors, 

students’ achievement data for physics, English and math curriculum domains were also 

collected from the school, in order to test the seven hypotheses. The achievement scores, 

recorded as percentages, were collected at two time-points: achievement at time 1, before 

the survey data collection, and achievement at time 2, after the survey data collection, 

within the same school year.  The factor variables were physics competence, physics 

affect, English competence, English affect, math competence, and math affect. 

3.4.2.1. Physics competence 

This factor is the cognitive component of physics ASC, relating to students’ sense 

of their academic ability in physics. The items were adapted from the Marsh (1992) 

Academic Self-Description Questionnaire (ASDQ) instrument. An example is, “I learn 

things quickly in PHYSICS classes”. A total of four items were used for students to rate 

their sense of competence in physics, as only physics was taught in the science class 

during the duration of the data collection, and students were aware that they were learning 

physics at that time. The maximal reliability for this factor was .94. 

3.4.2.2. Physics affect 

This factor is the affective component of physics ASC, relating to students’ 

personal interest and enjoyment in learning physics. The items were adapted from the 
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Marsh, Craven et al. (1999) and Arens et al. (2011) studies which measured students’ 

affect in other curriculum areas. An example is, “I enjoy doing PHYSICS work”. The 

maximal reliability for this factor was .92. 

3.4.2.3. English competence 

Like competence in physics, this factor is the cognitive component of English 

ASC. The items were also adapted from the Marsh (1992) ASDQ instrument, for students 

to rate their sense of competence in English. An example is, “I get good marks in 

ENGLISH”. The maximal reliability for this factor was .90. 

3.4.2.4. English affect 

This factor is the affective component of English ASC which measured students’ 

interest and enjoyment in English. The items were adapted from the Marsh, Craven et al. 

(1999) and Arens et al. (2011) studies. An example is, “I like ENGLISH”. The maximal 

reliability for this factor was .93. 

3.4.2.5. Math competence 

 This factor is the cognitive component of math ASC. The items used for students to 

rate their sense of competence in math were adapted from the Marsh (1992) ASDQ 

instrument. One item in this factor was negatively-worded: “I do badly in 

MATHEMATICS tests”. Responses to this item were reverse-coded during the analysis, to 

associate higher scores with more favorable responses. The maximal reliability for this 

factor was .93. 

3.4.2.6. Math affect 

This factor is the affective component of math ASC, relating to students’ personal 

interest and enjoyment in learning math. The four items forming this factor were adapted 

from Marsh, Craven et al. (1999) and Arens et al. (2011).  An example is, “I enjoy 
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MATHEMATICS classes”. However, two of the items were negatively-worded: “I hate 

MATHEMATICS” and “I do not like to learn MATHEMATICS”. The responses to these 

items were reverse-coded during the analysis to associate higher scores with more 

favorable responses. As with the negatively-worded item in the math competence factor, 

these items did not pose any problem. Removing these negatively-worded items from the 

analyses yielded similar results, so they were retained in the instrument. The maximal 

reliability for this factor was .94. 

3.4.2.7. Achievement at Time 1 

Students’ achievement scores in physics, English and math were collected from the 

school database at time 1, prior to the survey data collection.  The scores were reflective of 

formative assessment, administered by the school to assess students’ understanding of the 

topics taught in each curriculum domain: physics, English and math. Each assessment 

totalled 20 marks, assessing about two to three topics in each assessment. On average, 

students spent about 30 minutes doing questions under settings which were similar to that 

of formal assessments (e.g., silent conditions with no discussion among students, strict 

time duration to complete the assessment under the invigilation of their subject teachers), 

during curriculum time. Students’ achievement at time 1 was the average score of three 

assessments in each curriculum domain, recorded as percentages. 

3.4.2.8. Achievement at Time 2 

Students’ achievement scores at time 2 in physics, English and math were also 

collected from the school database, about two months after the survey data were collected. 

These scores were reflective of summative assessment, administered by the school at the 

end of the school semester, to assess students’ general understanding of each curriculum 

domain: physics, English and math. The total achievement score for each domain was 100 
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marks, assessing about six to ten topics depending on the domain. On average, students 

spent about two hours doing the assessment questions in one sitting, under settings which 

were similar to those of formal assessments (e.g., silent conditions with no discussion 

among students, strict time duration to complete the assessment under the invigilation of 

teachers in the school). These assessment scores represented the students’ achievement at 

time 2. 

3.4.3. Procedure 

Procedures of the research were approved by the university’s ethics committee. 

Informed consent was obtained from the school and the parents of the students before data 

collection. As suggested by the school, the survey was uploaded onto the school online 

portal and was open to all secondary 1 students for one week, as the students were used to 

completing surveys in such a manner. A briefing was given to the students by their 

teacher, to explain to them what the survey was about and what they were expected to do. 

Students who were willing to participate in the study keyed in their responses online. A 

computer laboratory manned by laboratory assistants, who were briefed about the details 

of the survey, was made available for students’ use. As the survey items were simply 

worded, no student had difficulty understanding the survey, when enquired.   

3.4.4. Statistical Analyses 

Confirmatory factor analyses (CFAs) and structural equation modeling (SEM) 

were used to test the adequacy of the hypothesized models to the data in the study (Brown, 

2006). All statistical analyses were conducted with Mplus V7 (Muthén & Muthén, 1998-

2015). A CFA model was performed separately for each factor. These analyses sought to 

determine how well each latent factor was defined by the observed ASC variables. In 

testing the CFA models, we first inspected the factor structure of a measurement model 
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(Model 1) with 24 variables forming six ASC factors: competence and affect factors for 

physics, English, and math, respectively (see Figure 3.1). Each variable was allowed to 

load on to one factor only. Secondly, we inspected Model 2 (see Figure 3.2), in which the 

competence and affect items of the respective domains pertained to a single ASC factor 

(i.e., physics, English, and math ASCs). We compared Model 1 with Model 2. SEM was 

performed to evaluate the relationships among the ASC factors and student achievement; 

examining the structural paths of student achievement at time 1 to the six ASC factors 

which then led to subsequent achievement at time 2 (Model 3). Following common 

practice, goodness of fit for the models was evaluated using a variety of fit indices: Root 

Mean Square Error of Approximation (RMSEA; Browne & Cudeck, 1993) at its 90% 

confidence interval (90% CI), the Comparative Fit Index (CFI; Bentler, 1990), and the 

Tucker-Lewis Index (TLI; Tucker & Lewis, 1973). Using Hu and Bentler’s (1999) 

guidelines for evaluating overall model fit, an RMSEA < .06 is typically considered to 

reflect an adequate model fit to the observed data and TLI and CFI indices of > .95 

indicated an acceptable and excellent model fit to the observed data, respectively. In 

addition, we reported chi-square test statistics and carefully inspected the parameter 

estimates. As the analyses also compared models that were nested, a chi-square difference 

test was used to evaluate goodness-of-fit between models.  

We initially accounted for the non-independence of students nested within classes 

by adjusting the standard errors using a sandwich estimator (Muthén & Muthén, 1998-

2015). However, the standard error resulting from these analyses were unstable and 

untrustworthy due to the small number of clusters (12 classes). We then conducted the 

analyses without adjusting the standard errors due to clustering. Since similar conclusions 
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were found with the two modelling strategies, the results reported in the study were based 

on single-level analysis without adjusting for the clustering. 

 

 

 

Figure 3.1. CFA Model 1: The proposed confirmatory factor analysis model to test the 

ability of 24 ASC variables (PC1-4; PA1-4; EC1-4; EA1-4; MC1-4; MA1-4) to form six 

distinct ASC factors, whereby the self-concept of each domain is separated into its 

competence and affect components.  

 

 

 

 

Figure 3.2. CFA Model 2: The proposed confirmatory factor analysis model in which the 

24 ASC items (PC1-4; PA1-4; EC1-4; EA1-4; MC1-4; MA1-4) were loaded onto three 

self-concept factors, whereby the competence and affect components of the self-concept in 

each domain was combined into one factor.  
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In order to further test some of the hypotheses, a mediation analysis was 

conducted. More specifically, to determine the independent contribution of each ASC 

factor for achievement in each curriculum domain, a multiple mediator model that 

included all six ASC factors as potential mediators for all three curriculum domains (i.e., 

physics, English and math) were investigated (Figure 3.3). The effect of achievement at 

time 1 on all six ASC factors (potential mediators) was tested by regressing the ASC 

factors onto achievement at time 1 (ai). Similarly, the relationship between ASC factors 

and achievement at time 2 was explored by regressing achievement at time 2 onto 

achievement at time 1 and ASC factors (bi). Finally, the significance of the product-of-

coefficients (aibi) was tested by computing the confidence intervals (CIs) for the mediated 

effect on the basis of the distribution-of-product method. For a factor to satisfy the criteria 

for mediation, the 95% CIs for the product-of-coefficients (aibi) must not include zero.   

 

Mediators 

 

Figure 3.3. Multiple Mediator Model for physics, English and math achievement. C’ = 

Direct effect (including mediator).  
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The analytical sample consisted of 275 students who were followed through three 

time waves (i.e., achievement at time 1, ASC survey, and achievement at time 2). The 

amount of missing data was relatively small (average coverage = 98%). Full information 

maximum likelihood estimation (FIML), available in Mplus V7 (Muthén & Muthén, 1998-

2015) was used to account for the missing data in each model. FIML utilizes all available 

information during the estimation process and provides consistent and efficient parameter 

estimates (Enders, 2010). Finally, we tested the hypotheses on ASC by studying the factor 

correlations and structural paths of the SEM model. According to Kline (2011), a sample 

size of at least 200 is required for SEM, so the sample size of N = 275 was adequate for the 

analyses. The following segments provide the details of the results.  

3.5. Results 

3.5.1. Descriptive Statistics 

 Descriptive statistics and the bivariate correlations among all the 24 variables 

measuring ASCs were reported in Table 3.1. The mean of the variables ranged from 3.13 

to 5.00. Since the students were nested within classes, we calculated the intraclass 

correlations (ICCs); that is, the amount of variance explained by class membership. The 

ICCs ranging from .01 to .08 for the 24 ASC variables indicated that students’ responses to 

the ASC variables were independent of the classes they were in. The ICCs for the six 

achievement variables were: .08 and .45 for physics achievement at time 1 and time 2, 

respectively. Similar values were .09 and .41 for math achievement, and .57 and .54 for 

English achievement. 

 



CHAPTER 3: Study 1 – Simultaneous Testing of ASC Models 

 

104 

 

 

 

 

Table 3.1 

Descriptive Statistics and Bivariate Correlations for the Measured Variables of the Study  

 
Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
1.   PC1 -                        
2.   PC2  .83*** -                       
3.   PC3  .88***  .81*** -                      
4.   PC4  .76***  .70***  .73*** -                     
5.   PA1  .70***  .62***  .69***  .69*** -                    
6.   PA2  .66***  .58***  .69***  .66***  .83*** -                   
7.   PA3  .47***  .37***  .44***  .55***  .66***  .62*** -                  
8.   PA4  .63***  .58***  .64***  .60***  .76***  .78***  .59*** -                 
9.   EC1  .02  .00  .03  .12*  .02  .02  .09 -.06 -                
10. EC2  .07  .04  .05  .07 -.07 -.07 -.01 -.07  .71*** -               
11. EC3 -.03 -.08 -.03  .01 -.01 -.02  .00 -.13*  .75***  .62*** -              
12. EC4 -.01  .03  .03  .00 -.12* -.09 -.05 -.08  .65***  .78***  .57*** -             
13. EA1 -.04 -.12 -.09 -.05 -.02  .00  .07 -.05  .71***  .69***  .68***  .62*** -            
14. EA2 -.13* -.12* -.10 -.05 -.04 -.02  .09 -.09  .62***  .51***  .59***  .53***  .69*** -           
15. EA3 -.10 -.15* -.07 -.04 -.04 -.01  .07 -.10  .71***  .65***  .71***  .61***  .88***  .75*** -          
16. EA4  .01 -.04  .04  .08  .06  .08  .16** -.02  .62***  .53***  .60***  .45***  .72***  .69***  .76*** -         
17. MC1  .42***  .43***  .34***  .32***  .30***  .30***  .15*  .29*** -.20*** -.21*** -.17** -.19*** -.21*** -.17** -.26*** -.11 -        
18. MC2  .50***  .47***  .40***  .38***  .32***  .28***  .15*  .29*** -.13* -.12* -.13* -.16** -.19** -.18** -.23*** -.10 .81*** -       
19. MC3  .37***  .32***  .29***  .28***  .20***  .19***  .09  .19*** -.17** -.18** -.17** -.21*** -.18** -.20*** -.22*** -.06 .67*** .69*** -      
20. MC4  .50***  .54***  .42***  .41***  .35***  .35***  .17**  .34*** -.14* -.13* -.15* -.21*** -.24*** -.23*** -.27*** -.15* .78*** .84*** .70*** -     
21. MA1  .34***  .29***  .28***  .28***  .38***  .37***  .20***  .29*** -.18** -.22*** -.14* -.25*** -.14* -.16* -.17* -.04 .74*** .68*** .62*** .69*** -    
22. MA2  .29***  .24***  .23***  .29***  .34***  .37***  .24***  .30*** -.07 -.18** -.04 -.22*** -.07 -.06 -.06  .05 .64*** .64*** .55*** .62*** .82*** -   
23. MA3  .26***  .20***  .19**  .21***  .34***  .31***  .23***  .28*** -.21*** -.27*** -.14* -.32*** -.14* -.11 -.17** -.06 .64*** .59*** .62*** .60*** .84*** .74*** -  
24. MA4   .17**  .15*  .15*  .13*  .26***  .29***  .15*  .20*** -.18** -.34*** -.16** -.31*** -.18** -.10 -.17** -.05 .54*** .51*** .57*** .54*** .78*** .72*** .81*** - 
                         

Mean 3.33 3.46 3.13 3.72 3.97 3.88 4.40 4.36 4.13 3.44 3.95 3.48 4.30 4.46 4.30 4.39 4.77 4.45 4.53 4.32 4.91 4.75 5.00 4.91 
SD 1.31 1.30 1.44 1.16 1.25 1.30 0.97 1.23 1.12 1.27 1.18 1.38 1.18 1.09 1.19 1.12 1.31 1.26 1.20 1.33 1.18 1.15 1.29 1.26 
ICC   .01   .02   .01   .01   .01   .02   .05   .04   .06   .06   .04   .02   .06   .05   .08   .04   .02   .07   .07   .06   .05   .06   .07   .03 

Note. N = 275. All variables were measured on a 1-6 Likert scale; PC1-4 = physics competence variables 1 to 4; PA1-4 = physics affect 

variables           1 to 4; EC1-4 = English competence variables 1 to 4; EA1-4 = English affect variables 1 to 4; MC1-4 = math competence 

variables 1 to 4; MA1-4      = math affect variables 1 to 4; SD = standard deviation; ICC = Intraclass correlations;                                         

*p < .05, **p < .01, ***p < .001
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An examination of the bivariate correlations in Table 3.1 showed that the 

correlations between ASC variables within the same curriculum domains were all positive 

and statistically significant (p < .001). Furthermore, results showed that, among the three 

domains, the minimum correlations were found between the competence and affect 

variables of the ASC whereas the highest correlations were found between competence or 

affect components of the ASC variables within the same curriculum domain. Specifically, 

in the physics domain, the Pearson correlation coefficients ranged from r = .37 (between 

PC2: physics competence and PA3: physics affect) to r =.88 (between physics competence 

items: PC1 and PC3), for the English domain, the correlations ranged from r = .45 

(between EC4: English competence and EA4: English affect) to r = .88 (between English 

affect variables: EA1 and EA3), and for the math domain, the correlations ranged from r = 

.51 (between MC2: math competence and MA4: math affect) to r = .84 (between math 

competence variables: MC2 and MC3 and between math affect variables: MA1 and MA3). 

3.5.2. Confirmatory Factor Analyses  

All the CFA models converged to proper solutions. Table 3.2 presents the model fit 

statistics. Model 1 which tested the ability of 24 ASC variables to form six distinct ASC 

factors (competence and affect as separate ASC factors for physics, English, and math 

domains) resulted in an adequate fit (² (234) = 464.84, p < .001, RMSEA = .06, 90% CI = 

[.05, .07], CFI = .96, TLI = .95). On the other hand, Model 2 which treated competence 

and affect together as a single factor for ASC for each of the three curriculum domains 

(i.e., physics, English and math) did not result in an acceptable fit (² (246) = 1107.27, p 

< .001, RMSEA = .11, 90% CI = [.11, .12], CFI = .83, TLI = .81). This finding justified 

the separation of the competence and affect components of ASC.  
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Table 3.2 

Model Fit Statistics for Confirmatory Factor Analyses and Structural Equation Modelling 

Model   df p RMSEA 90% CI CFI TLI 

Model 1     464.84 234 <.001 .06 .05 to .07 .96 .95 

Model 2  1107.27 246 <.001 .11 .11 to .12 .83 .81 

Model 3                

(SEM Model) 

825.05 357 <.001 .07 .06 to .08 .94 .93 

Note. N = 275. 2 = Chi square test; df  = degrees of freedom; RMSEA = root mean square 

error of approximation; CI = confidence intervals for RMSEA; CFI = comparative fit index; 

TLI = Tucker-Lewis index.  

 

 

Table 3.3 shows the correlations between the six ASC factors and achievement at 

time 1 and time 2. As shown in Table 3.3, the factor correlations were reasonable, ranging 

from r = -.31 (p < .001) (between English competence and math achievement at time 2 and 

between English affect and math achievement at time 2) to r = .88 (p < .001) (between 

English competence and English affect). 

 

Table 3.3 

Factor Correlations among Academic Self-Concepts and Achievements 
   1   2   3   4   5   6   7   8   9   10   11   12 

1.  Physics           
     Competence 

   --            

2.  Physics             

     Affect 

 .80*** --           

3.  English     

     Competence 

 .02 -.04    --             

4.  English           
     Affect 

-.10 -.01  .88***    --         

5.  Math      

     Competence 

 .53***  .37*** -.21*** -.27*** --        

6.  Math           

     Affect 

 .33***  .41*** -.24*** -.16*  .81***    --       

7   Physics     
Achievement 1 

 .55***  .39*** -.11* -.15*  .39***  .26***   --       

8.   English 

Achievement 1 

-.03 -.10  .36***  .30*** -.11* -.14*  .06   --      

9.   Math 

Achievement 1 

 .39***  .27*** -.25*** -.26***  .67***  .49***  .51***  .05     --    

10. Physics 
Achievement 2 

 .59***  .43*** -.11* -.16*  .44***  .27***  .73***  .21***  .54*** --   

11. English 

Achievement 2 

 .05 -.08  .47***  .35*** -.11* -.18**  .19**  .73***  .06  .37***     --    

12. Math 

Achievement 2 

 .44***  .31*** -.31*** -.31***  .77***  .57***  .55***  .09  .81***  .67***  .11   --  

Note. N = 275. Competence and affect factors of students’ academic self-concept were 

measured in the curriculum domains of physics, English, and math; Achievement 1 = student 

achievement at time 1 in the curriculum domain; Achievement 2 = student achievement at 

time 2 in the curriculum domain; * p < .05; ** p < .01; *** p < .001. 
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3.5.2.1. Correlations among ASC factors  

An inspection of the correlations among the six ASC factors (competence and 

affect factors for physics, English, and math) showed a high positive and statistically 

significant Pearson correlation coefficient between the competence and affect factors 

within each domain. The respective correlations between competence and affect factors for 

physics, English, and math domains were rs = .80, .88, and .81 (p <.001), respectively (see 

Factor Correlations in Table 3.3). 

Across domains, we observed statistically non-significant Pearson correlation 

coefficients between physics and English ASCs for both the cognitive and affective 

components with r = .02 (p = .78) between physics and English competence, r = -.01 (p 

= .87) between physics and English affect, r = -.10 (p = .15) between physics competence 

and English affect and r = -.04 (p = .57) between physics affect and English competence. 

On the other hand, negative and statistically significant correlations were found between 

English and math ASCs, also for both the cognitive and affective components: r = -.16 (p 

< .05) between English and math affect, r = -.21 (p < .001) between English and math 

competence, r = -.27 (p < .001) between English affect and math competence, and r = -.24 

(p < .001) between English competence and math affect. Negative and statistically 

significant correlations between English and math ASCs were also found in past studies 

(e.g., Marsh et al., 2012; Yeung, Kuppan, Foong et al., 2010). 

However, across-domain, a different trend was found between physics and math 

ASCs, indicating interrelatedness between the physics and math domains. Specifically, we 

found positive and statistically significant correlations between physics and math 

competence as well as between physics and math affect (r = .53, p < .001 and r = .41, p 

<.001, respectively). Positive and statistically significant correlations were also observed 
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between physics competence and math affect (r = .33, p < .001) as well as between physics 

affect and math competence (r = .37, p < .001).  

3.5.2.2. Correlations among achievement variables   

An inspection of the correlations among the six achievement variables showed high 

positive and statistically significant correlations within the same domains: r = .73 (p 

< .001) for both physics achievement at time 1 and time 2 and English achievement at time 

1 and time 2, and r = .81 (p < .001) between math achievement at time 1 and time 2. 

However, across domains that were dissimilar, statistically non-significant Pearson 

correlations were found between English and math achievements at time 1 (r = .05, p 

= .36), English achievement at time 1 and math achievement at time 2 (r = .09, p = .12), 

English achievement at time 2 and math achievement at time 1 (r = .06, p = .31), and 

between English and math achievements at time 2 (r = .11, p = .07). In contrast, non-

constant pattern was seen for the physics and English domains. For example, physics and 

English achievements at time 1 had a statistically non-significant correlation (r = .06, p 

= .30) whereas correlations  between physics and English achievements at other times 

were positive and statistically significant (i.e., r = .19, p < .01 between physics 

achievement at time 1 and English achievement at time 2, r = .21, p < .001 between 

physics achievement at time 2 and English achievement at time 1, and r = .37, p < .001 

between physics and English achievements at time 2). However, a different trend was 

found across-domain between physics and math, indicating interrelatedness between the 

domains, as shown by the high positive and statistically significant correlations with 

correlation across domain ranging from r = .51 (p < .001) (between physics and math 

achievements at time 1) to r = .67 (p < .001) (between physics and math achievements at 

time 2). 



CHAPTER 3: Study 1 – Simultaneous Testing of ASC Models 

 

109 

 

3.5.2.3. Correlations between achievement variables and ASC factors 

Inspecting the correlations between ASC factors and achievement variables 

showed positive and significant correlations between achievement and ASCs within 

domains with a Pearson correlation coefficient larger for the competence component than 

that of the affect component of ASC within each domain. For example, for physics ASC, 

the correlations with physics achievement at time 1 and time 2 were .55 and .59, 

respectively (p < .001) for physics competence and .39 and .43, respectively (p < .001) for 

physics affect. Similarly, the correlations with English achievement at time 1 and time 2 

were .36 and .47, respectively (p < .001) for English competence and .30 and .35, 

respectively (p < .001) for English affect and those with math achievement at time 1 and 

time 2 were .67 and .77, respectively (p < .001) for math competence and .49 and .57, 

respectively (p < .001) for math affect.  

Across domains, the results showed that the correlations between achievement and 

ASCs were consistently negative and statistically significant across dissimilar domains 

(e.g., English and math), and positive and statistically significant across similar domains 

(e.g. physics and math). For example, the correlations with English achievement at both 

time 1 and time 2 were -.11 (p < .05) for math competence, and -.14 and -.18, respectively 

(p < .05) for math affect. Similarly, the correlations with math achievement at time 1 and 

time 2 were -.25 and -.31, respectively (p < .001) for English competence and -.26 and 

-.31, respectively (p < .001) for English affect. In contrast, for similar or interrelated 

domains, the correlations with physics achievement at time 1 and time 2 were .39 and .44, 

respectively (p < .001) for math competence, and .26 and .27, respectively (p < .001) for 

math affect. Similarly, the correlations with math achievement at time 1 and time 2 

were .39 and .44, respectively (p < .001) for physics competence, and .27 and .31, 
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respectively (p < .001) for physics affect. The associations between physics and English 

domains, however, were not consistent, with correlations which were either statistically 

non-significant or negative and statistically significant. For example, the correlations with 

physics achievement at time 1 and time 2 were statistically non-significant for English 

competence (rs = -.11, p = .09) but negative and statistically significant for English affect 

(rs = -.15 and -.16, p < .05, respectively), and the correlations with English achievement at 

time 1 and time 2 were statistically non-significant for physics competence (r = -.03, p 

= .59 and r =.05, p = .42, respectively) and physics affect (r = -.10, p = .11 and r = -.08, p 

= .19, respectively).  

3.5.3. Structural Equation Modeling  

Model 3 (see Figure 3.4), the SEM model which tested the structural paths between 

achievements and the six distinct ASC factors, had a good fit (² (357) = 825.05, p < .001, 

RMSEA = .07, 90% CI = [.06, .08], CFI = .94, TLI = .93). As seen in Figure 3.4, the factor 

loadings for Model 3 were all acceptable (all > .50), with the lowest being .69 and the 

highest being .96. 

3.5.3.1. Structural paths within the same domains 

The SEM results indicated that students with high achievement in a domain at time 

1 also had high achievement in the domain at time 2, as shown from the positive and 

statistically significant structural paths from achievement at time 1 to achievement at time 

2 (see paths on the extreme right of Figure 3.4) within each domain (β = .41, p < .001; β 

= .55, p < .001, and β = .41, p < .001, respectively for physics, English and math). Due to 

the known influence of pre-existing knowledge on future achievement within domains, this 

result of achievement at time 1 positively predicting the achievement at time 2 of the same 

domain was expected. 
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Figure 3.4. SEM Model: Model 3, the results of the structural equation modelling testing 

the structural paths from achievement at time 1 to academic self-concept to subsequent 

achievement at time 2 for each domain and across domains, as well as the residual 

correlations between the academic self-concept factors. For the structural paths, black 

solid arrows (      ) represent positive, statistically significant paths, black dashed arrows    

(       ) represent negative, statistically significant paths, and grey arrows (       ) represent 

non-significant paths. The figure also displayed the residual variances and the factor 

loadings of each of the 24 ASC variables (PC1-4; PA1-4; EC1-4; EA1-4; MC1-4; MA1-4). 

All factor loadings were positive and statistically significant (p < .001). *p < .05, **p < 

.01, ***p < .001. 
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Similarly, the results implied that students’ achievement at time 1 in a domain 

positively predicted their ASCs in the same domain, as shown from the positive and 

statistically significant structural paths from achievement at time 1 to ASC factors within 

the same domains, for both competence (β = .49, p < .001; β = .36, p < .001, and β = .64, p 

< .001, respectively for physics, English and math) and affect (β = .35, p < .001; β = .32, p 

< .001, and β = .49, p < .001, respectively for physics, English and math). From these 

results, we could also see a consistent pattern of path coefficients for competence being 

larger than those for affect, within each domain. The results of the chi-square difference 

test showed that the path coefficient from physics achievement to physics competence was 

significantly larger than that from physics achievement to physics affect (Δ² (1) = 9.92, p 

= .002). Similarly, the path coefficient from math achievement to math competence was 

significantly larger than that from math achievement to math affect (Δ² (1) = 18.26, p 

< .001). In contrast, the path coefficient from English achievement to English competence 

was comparable to that from English achievement to English affect (Δ² (1) = 1.03, p 

= .311). The results indicated that achievement was a stronger predictor of competence 

than affect for physics and math domains. 

Examining the paths from the ASC factors to achievement at time 2 within the 

same domains showed that competence positively predicted subsequent achievement 

within domains (β = .28, p < .05; β = .40, p < .01, and β = .63, p < .001, respectively for 

physics, English and math). The same could not be said for affect as, none of the structural 

paths from affect to achievement at time 2 within the same domain was statistically 

significant (β = .03, p = .79; β = -.14, p = .25, and β = -.17, p = .08, respectively for 

physics, English and math). Moreover, the results of the chi-square difference test showed 

that the path coefficient from physics competence to physics achievement was comparable 
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to the path coefficient from physics affect to physics achievement (Δ² (1) = .95, p 

= .311). In contrast, the path coefficient from English competence to English achievement 

was significantly larger than that from English affect to English achievement (Δ² (1) = 

5.12, p = .024) and the path coefficient from math competence to math achievement was 

significantly larger than that from math affect to math achievement (Δ² (1) = 14.51, p 

< .001). The results indicated that competence was a stronger predictor of achievement 

than affect for English and math domains. 

3.5.3.2. Structural paths across domains 

Examining the structural paths from achievement at time 1 to ASC factors across 

domains showed different trends. Specifically, physics achievement did not predict the 

ASCs of other domains, as indicated by the statistically non-significant structural paths 

from physics achievement at time 1 to both English and math ASCs (β = .01, p = .92 and β 

= -.04, p = .53 for English competence and affect, respectively and β = .10, p = .08 and β 

=.02, p = .79 for math competence and affect, respectively). In the same manner, English 

achievement did not predict physics competence but negatively predicted physics affect, 

math competence and math affect, as indicated by the statistically non-significant 

structural path from English achievement at time 1 to physics competence (β = -.07, p 

= .18) and the negative and statistically significant structural paths to physics affect, math 

competence and math affect (β = -.12, p < .05, β = -.13, p < .01, β = -.17, p < .001, 

respectively). On the other hand, math achievement positively predicted physics 

competence, but did not predict physics affect, for the structural path from math 

achievement at time 1 to physics competence was positive and statistically significant (β 

= .15, p < .01) but statistically non-significant to physics affect (β = .10, p = .14). In 

contrast, math achievement negatively predicted English ASCs, as denoted by the negative 



CHAPTER 3: Study 1 – Simultaneous Testing of ASC Models 

 

114 

 

and statistically significant structural paths from math achievement at time 1 to both 

English competence and English affect (β = -.26, p < .001, β = -.26, p < .001, 

respectively).  

Examining the structural paths from ASCs to achievement at time 2 across domains 

showed that the competence component of ASC in two domains positively predicted 

subsequent achievement in another domain, indicating that the domains may be similar in 

one way or another. For example, physics competence positively predicted subsequent 

English achievement and math competence positively predicted subsequent physics 

achievement, as indicated by the positive and statistically significant structural paths from 

physics competence to English achievement at time 2 (β = .25, p < .05), and from math 

competence to physics achievement at time 2 (β = .27, p < .05), respectively. Apart from 

these two cases, competence in a domain did not predict subsequent achievement in any 

other domain as shown by the statistically non-significant across-domain structural paths 

from English competence to physics and math achievements at time 2 (β = -.02, p = .88, 

and β = -.15, p = .12, respectively), from physics competence to math achievement at time 

2, and from math competence to English achievement at time 2 (β = -.05, p = .65 and β = 

-.03, p = .84, respectively). Similarly, the affective component of ASCs in all the three 

curriculum domains did not predict the subsequent achievement in any domain, as implied 

by the statistically non-significant across-domain structural paths from physics affect to 

English and math achievements at time 2 (β = -.20, p = .07 and β = .09, p = .34, 

respectively), from English affect to physics and math achievements at time 2 (β = -.02, p 

= .89 and β = .05, p = .57, respectively), and from math affect to physics and English 

achievements at time 2 (β = -.15, p = .19 and β = -.03, p = .77, respectively).  
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3.5.3.3. Multiple mediator model 

In the multiple mediator model that included all the ASC factors, only the 

competence component of ASC in each domain was significantly associated with 

subsequent achievement within the same domain. As shown in Table 3.4, physics 

competence (aibi = .11, 95% CI = [.01, .22], English competence (aibi = .12, 95% CI = 

[.03, .21], and math competence (aibi = .37, 95% CI = [.22, .52]) satisfied the criteria for 

mediation for physics achievement, English achievement and math achievement, 

respectively. Therefore, competence is a mediator of achievement in the same domain. 

3.6. Discussion 

3.6.1. Findings of Hypotheses 

3.6.1.1. Hypothesis 1: Distinctiveness of the cognitive and affective components of ASCs  

The findings provided strong support for Hypothesis 1. The CFA results of the 

study showed that Model 1 which separated the cognitive and affective components of 

ASC had a better model fit than Model 2 which combined the cognitive and affective 

components of ASC within domains. Further evidence showing the distinctiveness 

between the cognitive and affective components of ASCs was also reflected in the 

correlations that were less than .90 between the competence and affect variables of ASCs 

within the same domains. Apart from distinctiveness, the results of the correlations also 

showed that students’ sense of competence and affect may function differently, as larger 

correlations were found between student achievement and competence than affect, within 

the same domains. Other evidences of the difference in the functionality of competence 

and affect were found in the results of the chi-square test (which assessed the difference 

between the path coefficients of competence and affect within the same domains).  
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Table 3.4 

Multiple Mediation Analyses for Physics, English, and Math Achievement 
 ai bi Direct Effect                                  

c’ 

Indirect Effect  

ai*bi  

Total Effect  

c = ∑6
𝑖=1 ai*bi + c’ 

 Coeff SE p Coeff SE p Coeff SE p Coeff p 95% CI Coeff p 95% CI 

Physics Achievement                

Physics competence  .06 .01 < .001  1.99 .92 .031    .11 .039 .01 to .22    

Physics affect  .04 .01 < .001    .25 .91 .785    .01 .786 -.06 to .08    

English competence  .00 .01    .923  -.15 .99 .882    .00 .935 -.00 to .00    

English affect -.00 .01    .529  -.13 .98 .891    .00 .894 -.01 to .01    

Math competence  .01 .01    .079  1.68 .82 .040    .02 .189 -.01 to .05    

Math affect  .00 .01    .793 -1.14 .88 .193     -.00 .797 -.02 to .01    

       .35 .04 < .001    .49 < .001 .41 to .56 

English Achievement                

Physics competence -.02 .01  .181    .89 .44 .043     -.01 .257 -.04 to .01    

Physics affect -.03 .01  .031   -.80 .45 .075    .02 .176 -.01 to .05    

English competence  .08 .01 < .001  1.61 .51 .002    .12 .007  .03 to .21    

English affect  .07 .01 < .001   -.57 .50 .252     -.04 .259 -.10 to .03    

Math competence -.03 .01    .006   -.08 .40 .840    .00 .841 -.02 to .03    

Math affect -.04 .01    .001   -.12 .43 .773    .01 .775 -.03 to .04    

       .46 .04 < .001    .56 < .001 .49 to .63 

Math Achievement                

Physics competence   .02 .01 .010   -.36 .80 .654     -.01 .659 -.04 to .02    

Physics affect   .01 .01 .137    .78 .81 .335    .01 .417 -.01 to .03    

English competence -.03 .01 < .001 -1.33 .85 .118    .04 .144 -.01 to .09    

English affect -.03 .01 < .001    .47 .84 .570     -.01 .575 -.06 to .03    

Math competence  .08 .01 < .001  4.47 .83 < .001    .37 < .001  .22 to .52    

Math affect  .05 .01 < .001 -1.41 .81 .082     -.08 .090 -.16 to .01    

       .38 .04 < .001    .70 < .001 .63 to .77 

Note. N = 275. Coeff = unstandardized linear regression coefficient; SE = standard error; CI = confidence interval.
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Achievement was found to be a stronger predictor of competence than affect for 

physics and math, and competence was found to be a stronger predictor of subsequent 

achievement for English and math, as indicated by the results of the chi-square test which  

showed that although the structural paths from student achievement at time 1 to competence 

and affect within domains were both positive and statistically significant for each domain, the 

structural path to competence was significantly stronger than that to affect, within the physics 

and math domains. Similarly, although the structural paths from competence and affect to 

achievement at time 2 within domains were both positive and statistically significant for each 

domain, we found significantly stronger structural paths from competence than from affect to 

achievement at time 2 within the English and math domains.  

3.6.1.2. Hypothesis 2: Domain specificity of ASCs 

The findings strongly supported Hypothesis 2, showing that students’ ASC is domain 

specific for both components of ASC, which means that students could clearly differentiate 

their competence and affect in various curriculum domains. The results of the study showed 

positive and statistically significant correlations between ASCs, between students’ 

achievement, as well as between ASCs and achievement within domains and either statistically 

non-significant or negative and statistically significant correlations across dissimilar domains, 

for both the competence and affect components of ASC. For example, we found that English 

competence had a negative and statistically significant correlation with math competence, 

which was in line with other ASC studies (Arens et al., 2011; Marsh & Craven, 2006). On the 

other hand, English competence and physics competence had a statistically non-significant 

correlation, which was similar to the findings of Möller et al. (2006) and Yeung, Kuppan, 

Foong et al. (2010). Domain specificity was also found in the affective component of ASC, 

which was consistent with the findings of Marsh, Craven et al. (1999) for English and math 

domains. English affect had a negative and statistically significant correlation with math affect 
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and statistically non-significant correlation with physics competence, showing similar findings 

with the competence component of English ASC. All in all, the results showed that students 

who have a strong ASC in a domain may not have a strong ASC in a dissimilar domain, for 

both competence and affect. It is important to note that the results for domain specificity were 

correlative in nature and should not be interpreted with a sense of causality.  

3.6.1.3. Hypothesis 3: Reciprocal effects model (REM)   

The findings provided strong evidence of REM for the competence component of 

ASC (Hypothesis 3), showing that students with high achievement in a domain are more 

likely to have high competence in the domain, which would most likely lead to high 

subsequent achievement in the same domain. This was supported by the consistent results of 

positive and statistically significant structural paths (in both the SEM and multiple mediator 

models) from achievement at time 1 to competence and to achievement at time 2 within the 

three curriculum domains of physics, English, and math.  This finding is consistent with past 

findings (Marsh & Craven, 2006; Marsh & O’Mara, 2008). However, the REM was not 

supported for the affective component of ASC. While all the structural paths from 

achievement at time 1 to affect were positive and statistically significant within each 

domain, the structural paths from affect to achievement at time 2 were all statistically non-

significant, as observed in the results of both the SEM and multiple mediator models.  This 

indicated that high achievement in a domain may predict students’ affect for the domain, but 

their affect for the domain would not predict their future achievement in the domain. In 

summary, the results showed support for Hypothesis 3, but only for the competence 

component of ASC, not affect.  

3.6.1.4. Hypothesis 4: Internal/external frame of reference (I/E) model. 

The I/E model posits that students’ ASCs are formed as a result of simultaneous 

internal and external comparisons that they engage in, which are different but connected frames 
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of reference (Marsh, 1986). The results of the correlations and structural path analyses 

generally showed support for the I/E model (Hypothesis 4) in the English and math domains, 

with a few exceptional findings. For example, whereas earlier research (e.g., Marsh, 1986, 

2007; Marsh, Byrne et al., 1999; Marsh & Shavelson, 1985; Möller et al., 2006) found high 

positive and statistically significant correlations between verbal and math achievements, the 

results showed that English and math achievements had statistically non-significant 

correlations, at both time 1 and time 2, as well as across times. Extending to the physics 

domain, physics and English achievements had positive and statistically significant correlations 

across times and at time 2, but had a statistically non-significant correlation at time 1. The 

disparity in results with existing literature for the correlations between achievements in 

different domains could be attributed to the high-ability students in the sample. Their 

achievement in English did not seem to be related to their achievement in a dissimilar domain 

(i.e., math) for these high achieving students, except for similar domains such as physics and 

math, which we found high positive and statistically significant correlations between their 

achievements, and between physics and English achievements. These results were similar to 

other studies with high-ability students (e.g., Kadir et al., 2013; Plucker & Stocking, 2001; 

Yeung, Kuppan, Foong et al., 2010).  

The positive and statistically significant correlations found between students’ 

competence within the same domains and negative and statistically significant correlations 

found between students’ competence of dissimilar domains (i.e., English and math 

competence) were similar to past studies supporting the I/E model (Marsh et al., 2012). 

Similarly, positive and statistically significant correlations were found between achievement 

and competence within the same domains but not across dissimilar domains, which are in line 

with the findings of Möller et al. (2006). The same trend was observed for affect. The SEM 

results (see Figure 3.4) showed further support for the I/E model. Within each domain, 
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achievement had a positive influence on competence, as predicted by the external frame of 

reference (Möller et al., 2006). Across dissimilar domains, English achievement had a negative 

and statistically significant path to math competence and math achievement had a negative and 

statistically significant path to English competence, showing support for the internal frame of 

reference. These results were consistent with Möller et al. (2009). The same trend was 

observed for affect. At this juncture, we can conclude that the results of the correlations 

analyses and SEM showed support for Hypothesis 4, for both competence and affect of 

dissimilar domains such as English and math.  

Extending the research to include the physics domain, the results were somewhat 

different. Firstly, the correlations between physics and English ASCs, for both competence and 

affect, were statistically non-significant. The SEM results showing that physics achievement 

did not predict the ASCs (both competence and affect) of the other domains (i.e., English and 

math) were similar to the findings of Möller et al. (2006). One possible explanation for this 

might be that the students participating in the study were newly introduced to the physics 

domain in secondary 1, as compared to English and math which were introduced at preschool 

or kindergarten. Their achievement in this new learning domain was not secured enough to 

exert any sizeable effect on outcomes that were not directly relevant. Another interesting 

finding was that English achievement had no effect on physics competence (as shown by the 

statistically non-significant structural path in Figure 3.4, which was in contrast with the 

negative and statistically significant path found in Möller et al., 2006), but had a negative effect 

on physics affect (as shown by the negative and statistically significant path from English 

achievement to physics affect). All in all, the results with the physics domain showed some, but 

not full support for the I/E model.  
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3.6.1.5. Hypothesis 5: Reciprocal internal/external frame of reference model (RI/EM) 

Similar to past studies (Möller et al., 2011), we observed positive and statistically 

significant structural paths from achievement at time 1 to competence, and to subsequent 

achievement at time 2 within the same domains but not across dissimilar domains such as 

English and math. For example, the structural path from English achievement to math 

competence was negative and statistically significant (as predicted by RI/EM) but from math 

competence to English achievement at time 2, the structural path was statistically non-

significant. Similarly, the structural path from math achievement to English competence was 

negative and statistically significant (as predicted by RI/EM) but from English competence to 

subsequent math achievement at time 2, the structural path was statistically non-significant. 

These results with the English and math domains were similar to the findings of Möller et al. 

(2011, 2014). 

Different trends were observed for the relations between physics and the English 

domains. More specifically, the structural paths from physics achievement to English 

competence and to subsequent physics achievement were all statistically non-significant, and 

was similar to the structural path from English achievement to physics competence but the 

structural path from physics competence to subsequent English achievement at time 2 was 

positive and statistically significant. This is an interesting finding, as structural paths across 

different domains were expected to be either statistically non-significant or negative and 

statistically significant. A look at the Secondary 1 physics curriculum showed that there were 

topics which involved the understanding of text (e.g., topic of heat), and problems requiring 

students to explain scientific phenomena and provide reasoning for their answers (which 

required the skills of the English domain). Due to the variety of physics problems presented in 

the Grade 7 physics curriculum and the fact that physics was newly introduced, the newly-
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formed physics competence of the students could also predict their subsequent English 

achievement. More tests need to be done to investigate this possibility.  

As the affective component of ASC did not support the REM within domains, it did not 

support the RI/EM.  For example, all the structural paths from physics, English, and math 

affect to the corresponding achievement at time 2 were statistically non-significant, showing no 

reciprocal effects from affect to subsequent achievement within domains. Across domains, we 

found patterns that were similar to the competence component of ASC. For example, the 

structural path from English achievement at time 1 to math affect was negative and statistically 

significant (in line with the RI/EM prediction for competence), and the structural path from 

math affect to English achievement at time 2 was statistically non-significant. Similarly, the 

structural path from math achievement at time 1 to English affect was negative and statistically 

significant (as predicted by RI/EM for competence) and the structural path from English affect 

to math achievement at time 2 was statistically non-significant. Extending the research to 

include the physics domain, we found similar trends whereby the structural path from English 

achievement at time 1 to physics was negative and statistically significant and the structural 

path from physics affect to English achievement at time 2 was statistically non-significant. 

However, no RI/EM trend as observed as indicated by the statistically non-significant 

structural paths from physics achievement at time 1 to English affect to physics achievement at 

time 2.  In summary, the results showed some support for the RI/EM in Hypothesis 5 for the 

English and math domains, but only for competence and not affect.   

3.6.1.6. Hypothesis 6: Big-fish-little-pond-effect (BFLPE) 

As expected, the BFLPE (Hypothesis 6) was not observed, most probably because of 

the similar ability-level of the students in each class. The low ICCs of all ASC variables 

showed that students’ ASCs for both competence and affect in all the domains were 

independent of the class they were in, showing no support for the BFLPE. Another reason 
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for this could be the fact that the students were in Grade 7 and were relatively new to the 

school and their peers, and that the classes were not streamed into ability-levels as yet (i.e., 

all the students were considered to be of similar high ability as they met the cut-off 

achievement criteria for school enrolment). Studies could investigate the BFLPE of high-

ability schools at higher grades to see if this effect is prominent, especially at Grades 9 and 

10, after ability streaming. Another extension to this study could be to include the 

achievement and ASC data of a group of students of similar ability but in an average school, 

to test for the BFLPE.  

3.6.1.7. Hypothesis 7: Interrelatedness of self-concept in similar domains 

Another interesting finding from the study is that while there were contrast effects 

across domains (achievement in one domain adversely affecting ASC in another domain) as 

shown by the I/E model, there were weaker contrast effects between two similar domains 

(physics and math) such that achievement in math did not adversely affect physics 

competence. The results were similar to that of Möller et al. (2006), that physics and math 

were considered similar (but distinct) domains that did not show support for the I/E model 

(Hypothesis 4).  Correlations between variables as shown in Table 3.3 and the structural 

paths as shown in the SEM model in Figure 3.4 showed that whereas English and math had 

strong contrast effects, physics and math were more interrelated. This means that students 

who felt competent in math were more likely to feel competent in physics as well, but 

unlikely to feel competent in English. Likewise, if they had an interest in math, they were 

more likely to have an interest in physics than in English. This finding was supported by the 

results of the correlations analyses which showed that whereas English competence had a 

negative and statistically significant correlation with math competence, math competence 

had a positive and statistically significant correlation with physics competence. The results 

were similar for the affective component of ASC, where there was a positive and statistically 
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significant correlation between physics affect and math affect. In contrast, there was a 

negative and statistically significant correlation between English affect and math affect and a 

statistically non-significant correlation between English affect and physics affect. Positive 

correlations between physics and math ASCs provided some support for Hypothesis 7, that 

is, the interrelatedness between physics and math domains.  

The interrelatedness hypothesis was further supported by the results of the SEM model 

(see Figure 3.4). Students who achieved well in math also had a high physics competence and 

students who had a high math competence also achieved well in physics, as shown by the 

positive and statistically significant structural paths from math achievement at time 1 to 

physics competence and from math competence to physics achievement at time 2. As math 

skills are a requirement to do physics, the physics domain shares common features with the 

math domain, so students’ achievement in math has a positive influence on physics 

competence, and math competence has a positive influence on physics achievement. However, 

the same claim could not be made for physics. Physics achievement had no influence on math 

competence and physics competence had no influence on subsequent math achievement at time 

2, as denoted by the statistically non-significant structural paths from physics achievement at 

time 1 to math competence, and from physics competence to math achievement at time 2. An 

explanation for this could be the focus of the Grade 7 physics curriculum which may or may 

not require high-level mathematical skills. There was also no influence of achievement on 

students’ affect in the physics and math domains. For example, physics achievement was 

shown to have no influence on math affect and math achievement did not predict physics 

affect. The statistically non-significant structural paths from physics affect to math 

achievement and from math affect to physics achievement also showed no cross-domains 

influence of affect on achievement for physics and math.  Therefore, the interrelatedness 

(Hypothesis 7) between the physics and math domains were prominent only for the cognitive 
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component of ASC, similar to the findings of Marsh et al. (2015), leading to the conclusions 

that physics and math were interrelated and considered as “near domains” on the ASC 

continuum as opposed to the contrast effects of dissimilar domains (e.g., English and math) on 

the opposite end of the ASC continuum.  

3.6.2. Implications of Findings 

Treating the cognitive and affective components of ASC as separate and distinct 

(Hypothesis 1) will make ASC intervention strategies more specific, thus increasing the 

chances of success. For example, if the targeted educational outcome is to improve student 

achievement, then intervention strategies should focus on enhancing students’ sense of 

competence in the domain (cognitive component of ASC). As shown in the study, affect did 

not predict achievement in any domain, so enhancing students’ liking for a domain may not 

improve their achievement in the domain. Even though we did not test the association of the 

affective component of ASC with other educational outcomes in this study, there were studies 

which have found associations between affect and outcomes such as academic and career 

aspirations (e.g., Guo, Marsh et al., 2015; Guo, Parker et al., 2015; Marsh, Craven et al., 1999; 

Yeung et al., 2012; Yeung, Kuppan, Foong et al., 2010). Therefore, if the intended outcome is 

to enhance students’ academic and career aspirations in that domain, then intervention 

strategies should focus more on enhancing students’ interest (affective component of ASC) in 

that domain. If the concern is a holistic development of the students, then neither ASC 

component should be ignored.  

A practical implication for the domain specificity (Hypothesis 2) finding is that 

intervention strategies to improve student ASC in certain domains should target those specific 

domains for optimal results. For example, if students’ English achievement needs to improve, 

then the intervention strategies should focus on improving the students’ sense of competence in 

English instead of math or other unrelated or dissimilar curriculum domains.  



CHAPTER 3: Study 1 – Simultaneous Testing of ASC Models 

 

126 

 

A practical implication for the REM (Hypothesis 3) finding is that intervention 

strategies for continual student achievement in a domain should focus on improving 

students’ sense of competence (more than affect) in that domain. Motivation strategies such 

as informative teacher feedback and skill-enhancing learning tasks that are appropriate for 

students’ learning level are some of the intervention that can be put in place in schools to 

give students opportunities to experience success in the learning tasks, thus increasing their 

sense of competence in the domain (Craven, Marsh, & Debus, 1991). Strategies that just 

target on improving students’ interest or affect in a domain, may not have sustainable effects 

for achievement and may not even be successful in improving student achievement in that 

domain, at least not in the short term (Yeung et al., 2012).  

The findings of Hypotheses 4, 5, and 6 imply that students engage in dimensional 

and social comparisons which contribute to the development of their ASCs in each 

curriculum domain (Möller & Marsh, 2013). Educators and parents should be aware that 

achievement in a domain could have negative consequences for ASCs in a dissimilar 

domain, so teacher and parental support for students are critical. Educators and parents 

should also be mindful that students’ learning environment play an important role in the 

development of students’ ASC which, in turn, affect their achievement and other educational 

outcomes. Sending students to high-ability schools could lead to the BFLPE which could be 

detrimental to students’ ASC.  

The findings of the interrelatedness of curriculum domains (Hypothesis 7) imply that 

intervention strategies could target improving achievement in similar domains which could, 

in turn, enhance ASCs in different, but similar domains. This is especially useful for 

developing positive ASCs in curriculum domains that are newly introduced at later years of 

school life (i.e., secondary school or high school), such as physics. For example, when 

schools focus on intervention strategies to improve students’ math achievement, not only 
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could it enhance students’ math competence and math affect, it could also enhance the 

students’ competence in another interrelated curriculum domain such as physics. Similarly, 

intervention strategies that focus on enhancing students’ competence in math, could not only 

positively affect their subsequent math achievement, but also their subsequent achievement 

in another interrelated domain such as physics. Results on interrelated curriculum domains 

are crucial to determine effective curriculum intervention strategies that could benefit more 

than one domain.  

Although a single study is not sufficient to draw conclusions, the findings in the study 

did summarize the findings from numerous disparate studies each testing a fraction of the 

hypotheses. The findings may be generalized to samples with similar backgrounds and could 

be explored more deeply across a bigger, more diverse sample as part of future studies to 

establish more generalizable conclusions. 

3.6.3. Limitations and Future Directions 

It is important to note some limitations in the present study, and how it could be further 

improved. First, the relatively small sample of 275 students as compared to other ASC studies 

and the fact that the students came from one school and of a specific ethnicity is a clear 

limitation. Therefore, definitive conclusions should not be drawn from this sample. However, 

the objective of replicating and reinforcing the ASC hypotheses was well-achieved and the 

implications and conclusions were reasonable, although they could be explored further for 

generalizations.  

Second, given the sample comprised students of Chinese ethnicity whose first language 

was English, it is not representative of most schools in Singapore and around the world. It 

could be that the hypotheses were replicable only with student samples with characteristics 

similar to the present sample. Several studies that have shown how students of different 

cultures report their ASC differently, affecting the mean scores of their ASC (e.g., Arens et al., 
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2014; Tanzer, Simm, & Marsh, 1997). However, the relations of ASC with achievement scores 

and other factors were still similar. This is seen from the findings which were comparable to 

other cross-cultural ASC studies. Therefore, whereas the mean ASC ratings may not be 

generalized to other schools, the hypotheses could hold true, even in schools with a diverse 

racial mix.  

Third, even though ‘science’ is the domain that is commonly studied by Grade 7 

students around the world, the specific branch of science taught to the Grade 7 students in this 

study was ‘physics’. Past studies have shown that other branches of science such as chemistry, 

biology and earth science may vary in context from ‘physics’ and thus have different relations 

with languages and math (e.g., Marsh et al., 2015), possibly giving us slightly different results. 

However, the main finding that we highlighted in this study is that curriculum domains which 

share similar features would have higher interrelatedness than curriculum domains that do not 

share similar features. However, if students were surveyed right after other topics such as 

biology or chemistry which do not involve mathematical concepts and calculations (i.e., they 

do not share similar features with math), the results may be very different from the findings for 

the physics domain demonstrated in this study. Future studies could explore the possible 

interrelatedness between chemistry and math or between biology and languages such as 

English for Grade 7 students (the starting point of science module separation), and study their 

relations over time. Such studies could also investigate whether different topics in the science 

curriculum would display similar patterns or alter the conclusion.  

The fourth limitation is the small gap in time (i.e., five months) between the three time 

waves of data collection of achievement scores and ASCs. This was because the school had a 

tight schedule and time constraint was a major factor for the administration of surveys and 

liaising with researchers. A more effective longitudinal study would be to follow the students 
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over a period of years in their school life. This could also add strength to the tests of reciprocal 

effects and domain interrelatedness over time.  

The fifth limitation is that the only educational outcome measured in this study was 

achievement. The results showed that the affective component of ASC did not predict 

achievement. We know from past studies that affect positively predicts other educational 

outcomes (e.g., Guo, Marsh et al., 2015; Yeung et al., 2012). Future studies could include 

measurements of a range of educational outcomes to investigate whether affect would predict 

other educational outcomes such as engagement and career aspirations.  

The sixth limitation is about data collection. We could strengthen the results of the 

hypotheses (i.e., I/E, RI/EM) by collecting another wave of ASC data after students’ 

achievement at time 2. Nevertheless, the set of achievement and ASC data collected for the 

study were sufficient for us to test the hypotheses.  

Finally, the seventh limitation is the strong assumption of a direct link between ASC 

and outcomes such as achievement. In reality, achievement will not occur without effective 

instruction. Hence ASC, including a positive belief of potential to achieve (competence) and 

a positive interest in learning (affect), are just the learners’ attitudes which serve as the 

prerequisites for effective learning and desirable outcomes. The cognitive features involved 

in the teaching and learning processes that bring about achievement outcomes have not been 

accounted for in this analysis, and should be considered in future research. For example, 

future studies can consider students’ ASC over time and the way teaching processes and the 

curriculum may affect their ASC development in each domain. 

All in all, the test of all seven hypotheses in ASC research has provided compelling 

evidence supporting the rigor of the existing ASC theories and models. However, as some of 

the findings may not be generalized to all student populations, more extensive studies in more 

schools need to be carried out in future. In spite of the limitations, the reliability of the present 
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data was high, and most results were in line with proven theories and existing models from the 

literature. The results of this study are especially important because it captured young students’ 

early ASC of physics. Most Grade 7 students around the world do only general science at this 

age and would develop physics ASC only when they are older, as physics is usually introduced 

to students at Grade 9 and beyond. The results of this study are valuable to researchers 

planning to conduct longitudinal studies on students’ ASC in physics, and for studies 

investigating the challenges students face in the physics curriculum and achievement. Future 

studies can look into students’ ASC of physics and other domains over time and the processes 

in the curriculum that may affect their ASC development.  

3.7. Conclusion 

The findings of this investigation showed that most hypotheses were accepted with this 

unique group of students, showing the replicability and applicability of ASC models across 

students of varying backgrounds, nationalities and cultures. Most of the findings in the study 

were similar to those of past ASC studies, with some interesting findings that extended 

previous research. The results of the study have shown that the cognitive and affective 

components of the student ASCs were separable and distinct from each other and both 

competence and affect were domain specific. The REM, I/E model, and RI/EM formulated in 

other ASC studies were supported, but only for the cognitive component of ASC, and mainly 

for dissimilar domains of English and math. The BFLPE was not observed in this study which 

comprised participants of similar academic ability. Last but not least, we found interrelatedness 

between the math and physics curriculum domains, and less contrast effects between the 

physics and English domains than between the English and math domains. As reflected in the 

results of the study, students’ ASCs positively predicted educational outcomes and have no 

negative cross-domains effects. Therefore, the main recommendation is that schools should 

look into intervention strategies to enhance both components of student ASCs, as each 
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component is distinct and predicts specific outcomes of education. Also, certain curriculum 

domains should be given careful attention as the achievement in those domains could 

positively affect the ASC as well as the achievement in other similar domains. If enhanced in 

an appropriate manner, ASC can positively influence educational outcomes in a specific 

domain beyond the effects of previous achievement and academic performance, so for optimal 

effects in improving school learning outcomes, ASC intervention strategies should be 

extensively implemented in schools.  
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CHAPTER 4: STUDY 2 -                                                                                         

School Achievement and Science Motivation during the Primary-

Secondary School Transition 

 

4.1. Preface 

Whereas Study 1 focused on self-concept as a motivational variable, Study 2 includes a 

range of other motivational variables and included students’ achievement scores upon entry 

to secondary education. Specifically, Study 2 extends the correlation analysis in Study 1 by 

including students’ Grade 6 national examination achievement (cognitive) and more 

motivational variables (non-cognitive) in physics (i.e., self-efficacy, inquiry, engagement, 

educational aspiration) in the analysis. The findings will help us understand the relations 

between student achievement and motivational variables during the transition period 

between primary and secondary school. The purpose is to (1) show the suitability of Grade 

7 as a starting point for intervention strategies related to physics, (2) highlight the 

motivational variables that are most associated to student achievement, and (3) guide 

intervention strategies to enhance student motivation in learning physics.  
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4.2. Abstract 

This study investigates the relations between students’ achievements and their motivation 

towards physics before and after transition from primary to secondary school. Using a 

sample of Secondary 1 (Grade 7) students in Singapore (N = 272), confirmatory factor 

analysis was conducted on survey responses to: self-concept, self-efficacy, interest, 

inquiry, engagement, and educational aspiration, about learning physics. Achievement 

scores in science, English, and math used in the analysis included the Primary School 

Leaving Examination (PSLE) scores in Grade 6, first-term test scores and mid-year 

examination scores in Grade 7. Achievements in PSLE were found to be weakly correlated 

with the attitude factors. Grade 7 math and physics test scores had significant relations 

with physics motivation, and such relations tended to grow stronger over time. Math 

achievement also had significant relations with physics motivation, which also tended to 

grow stronger over time. The results imply that students who did not do well in science in 

primary school (PSLE) could cultivate positive attitudes towards physics in secondary 

school, given proper instruction in the curriculum domains. The first secondary school 

year is therefore a critical time to have a curriculum that can enhance positive attitudes 

towards physics, which may also subsequently lead to better achievements.  
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4.3. Introduction 

The relation between student achievement and motivation has been of interest to 

many researchers in education and psychology. Much research has been done on students’ 

achievements and motivational attitudes towards school as well as in several curriculum 

domains like language, mathematics, and science (e.g., Abu-Hilal, 2000; Forbes, Kadir, & 

Yeung, 2017; Guo, Marsh, Parker, Morin, & Yeung, 2015; Phan, Ngu, Yeung, 2016; 

Willson, 1983; Yeung, Craven, & Kaur, 2012; Yeung, Kuppan, Foong et al., 2010; Yeung, 

Kuppan, Kadir, & Foong, 2010). While some researchers have found that achievement and 

motivational attitudes are significantly correlated (e.g., Marsh & Yeung, 1998; Weinburgh, 

1995; Yeung, Kuppan, Kadir et al., 2010), others have suggested that they are weakly 

correlated or not correlated at all (e.g. Abu-Hilal & Atkinson, 1990). These conflicting 

findings showed that the relations between achievements and motivational attitudes are 

inconclusive. In this study, I investigated the relations between different types of 

achievement and students’ motivational attitudes towards Physics in a range of 

motivational aspects.  

There has been much discussion about researchers’ measurements of achievements 

and motivational attitudes. The relation between achievement and motivational attitudes 

depends on the types of test scores used as achievement indicators (Abu-Hilal & Atkinson, 

1990). For example, Marsh and Yeung (1998) found that self-concept and motivational 

attitude measures related more strongly to achievement in the form of school grades than 

to standardized tests. According to Abu-Hilal (2000), some researchers have dealt with 

items that do not measure motivational attitudes effectively, resulting in varying findings.  

In the area of science, Willson (1983) did a meta-analysis of 43 studies and found 

that while most studies reported positive correlations between attitude to, and achievement 
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in, science, 75% of the correlation coefficients analyzed were less than .30 in magnitude. 

In his study, he found that at elementary levels, correlations were generally quite low until 

Grade 6. The low correlations suggest that there is little relation between science attitudes 

and achievement. By Grade 6, motivational attitudes of students tend to be more clearly 

established, as children who like science do better in it and have more positive attitudes 

towards it. Willson’s study showed a consistent .2-.3 correlation between achievement and 

attitude scores in grades 6 to 10. At Grade 12, the correlation drops to .04. His study 

showed that students, after a certain grade, have more or less developed their attitudes, and 

achievement is less likely to influence their motivational attitudes towards science.   

Willson’s findings have sparked my inquisitiveness to find out how young students 

in Singapore of this generation would fare in the achievement-attitude correlation 

coefficients. Even though there have been studies of achievement-attitude correlations in 

the science domain, not much has been done to study achievement-attitude relations in 

physics – an area of science that many students find challenging. In this study, I 

investigated the relation between students’ achievements in a national examination taken 

at the end of the final year of primary school (Grade 6), and achievements within the first 

five months of Secondary 1 (Grade 7) to their motivational attitudes towards physics. 

Apart from examining whether past achievements are related to students’ motivation in 

physics, I also examined whether there was a correlation between students’ achievements 

in different curriculum domains and their motivational attitudes towards physics. The 

achievement measures used in my study were standardized physics, English, and math test 

scores and I measured attitudes towards physics in six motivational factors - self-concept, 

self-efficacy, interest, inquiry, engagement, and educational aspiration. The results would 

provide a better understanding of the relations between students’ achievement in three 
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curriculum domains during the primary and secondary school transition, and their relations 

with motivational attitudes in physics at Grade 7.  The findings would enable educators to 

optimize self-concept and attitude enhancement effects from a multidimensional 

perspective. Since I measured students’ attitudes using a range of motivational factors, I 

will refer to students’ attitudes as motivation for the rest of the chapter. I hypothesize that 

students’ science achievement in the first year of secondary school is more highly 

correlated to their science motivation in secondary school than the science achievement at 

the end of their primary school year. 

4.3.1. Relations between achievement and motivation in science 

There has been much discussion about researchers’ measurements of achievements 

and motivational attitudes. In the area of science, Willson (1983) did a meta-analysis of 43 

studies and found that while most studies reported positive correlations between attitude 

to, and achievement in, science, 75% of the correlation coefficients analyzed were less 

than .30 in magnitude. In his study, he found that at elementary levels, correlations were 

generally quite low until Grade 6. The low correlations suggest that there is little relation 

between science attitudes and achievement. By Grade 6, motivational attitudes of students 

tend to be more clearly established, as children who like science do better in it and have 

more positive attitudes towards it. Willson’s study showed a consistent .2 to .3 correlation 

between achievement and attitude scores in grades 6 to 10. At Grade 12, the correlation 

drops to .04. His study showed that students, after a certain grade, have more or less 

developed their attitudes, and achievement is less likely to influence their motivational 

attitudes towards science.  

Willson’s findings have sparked our inquisitiveness to find out how young students 

in Singapore of this generation would fare in the achievement-attitude correlation 
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coefficients. Even though there have been studies of achievement-attitude correlations in 

the science domain, not much has been done to study achievement-attitude relations in 

physics – an area of science that many students find challenging. The results would 

provide a better understanding of the relations between students’ achievement in three 

curriculum domains during the primary and secondary school transition, and their relations 

with motivational attitudes in physics at Grade 7. The findings would enable educators to 

optimize self-concept and attitude enhancement effects from a multidimensional 

perspective. Since I measured students’ science attitudes using a range of motivational 

factors focusing on the physics branch of science, I will refer to students’ science attitudes 

as motivation towards physics for the rest of the paper. 

4.3.2. Significance of Motivation towards Physics 

The significance of investigating students’ motivation towards the science 

curriculum probably stems from the increasing evidence of the rapid decline in students’ 

aspirations in pursuing science-related higher education and careers, even for students who 

achieve well in science (National Science Board, 2014). With less students pursuing higher 

studies related to science, there is a decline in scientific literacy in the general populace, as 

well as a shortage of science teachers (Bawden, 2015; O’Leary, 2001), resulting in a 

vicious cycle generating greater problems such as threats to the health industry, national 

security and global competitiveness (National Science Board, 2014, 2015). Physical 

science, or physics, seems to be the least appealing to students (Smithers & Robinson, 

2007). Osborne, Simon, and Collins (2003) suggested that physics is least popular most 

probably because “the relevance of the physical sciences was difficult for students to 

identify” (p. 1061). Students’ poor attitudes towards physics have also been explained by 

the task difficulty associated with the subject (Smithers & Robinson, 2007).  
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Physics is notorious for being a difficult subject to learn where there is a need for a 

lot of effort to be expended, yet the resulting grades may not always be favorable (Angell, 

Guttersrud, Henriksen, & Isnes, 2004; Prow, 2003). Since past achievement has been 

shown to influence motivation when both achievement and motivational variables are 

measured within a specific domain (e.g., Marsh & Yeung, 1998; Weinburgh, 1995), it is 

likely that because physics is challenging, and students’ academic scores reflect this, that 

they have a poor attitude towards physics and are consequently less likely to choose to 

study the subject. In the study, I attempted to explicate whether this is true, using the 

achievements of a sample of high-ability students in Singapore. 

4.3.3. Achievement and Science Motivation 

The relation between achievement and motivational attitudes depends on the types 

of test scores used as achievement indicators (Abu-Hilal & Atkinson, 1990), and the 

effectiveness of the items used to measure motivational attitudes (Abu-Hilal, 2000), 

resulting in varying findings. In our study, I measured student achievement during the 

primary-secondary school transition by using the results of a national examination taken 

by students at the end of their primary school year (i.e., Grade 6) and the results of their 

school grades taken at two time-points during the first five months of their secondary 

school year (i.e., Grade 7), in three curriculum domains: science, English and math. In 

Singapore, these are the norms when measuring achievement during primary-secondary 

school transition. I measured attitudes towards science in six motivational factors - self-

concept, self-efficacy, interest, inquiry, engagement, and educational aspiration - as these 

were the factors targeted by the school during the period of our study. Self-concept is 

students’ sense of their science competence, self-efficacy is students’ underlying belief of 

their ability to manage the work processes in science learning, interest reflects students’ 
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liking of science, inquiry is students’ deeper internalization of scientific endeavors, 

engagement reflects students’ attentiveness during science lessons, and educational 

aspiration is students’ desire to pursue further education in science in the future.  

4.3.3.1. Self-concept 

In a general sense, academic self-concept can be defined as one’s perception of 

one’s general ability in school (Shavelson, Hubner, & Stanton, 1976). In this study, self-

concept refers to students’ perception of their academic ability in science (sense of 

competence). When students believe in their academic ability in science, they are more 

likely to have high achievement in science (Kadir, Yeung, & Diallo, 2017), which would 

further enhance their sense of competency in science (Marsh & Craven, 2006). The vast 

studies conducted on academic self-concept over the past four decades have highlighted 

the benefits of self-concept on academic outcomes such as classroom behaviors, school 

achievement, educational and career aspirations, and academic choices (Kadir & Yeung, 

2016). Educators need to be aware of the importance of enhancing students’ self-concept 

or sense of competence in a curriculum domain and provide learners with the best learning 

environment to optimize their potential. 

4.3.3.2. Self-efficacy 

Self-efficacy is an important motivational attitude in student learning. Bandura 

(1997) defines self-efficacy as “beliefs in one’s capabilities to organize and execute the 

courses of action required to produce given attainments” (p. 3). It is often taken as a 

representation of one’s sense of competence in a specific domain and relative to a specific 

standard. According to Bandura, self-efficacy plays a central self-regulatory role of human 

agency and it can influence the choice of activities, effort and persistence, resilience to 

adversity, and vulnerability to stress and depression. Empirical studies have supported that 
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students with high self-efficacy are more inclined to put in an effort, engage in tasks, and 

therefore have higher achievement (e.g., Schunk, Pintrich, & Meece, 2008). Evidence has 

also shown that this applies also to students in Singapore where the present data were 

collected (see Lau, Liem, & Nie, 2008; Lau & Roeser, 2002; Liem, Lau, & Nie, 2008). 

4.3.3.3. Interest  

In the science curriculum, the significance of investigating students’ interest in 

learning science lies with an increasing evidence of a decline in students’ interest in 

pursuing scientific endeavors such as furthering education in science and choosing science 

related careers (National Science Board, 2014; Office of the Chief Scientist, 2012) Interest 

should be the focus of motivation because it reflects the positive potential of human 

learning behaviors (Ryan & Deci, 2000). Students who have interest in learning are likely 

to persist in learning tasks and activities in the long term (Elliot & Church, 1997). 

4.3.3.4. Inquiry 

Inquiry is a highly valued construct but least explored in modern science education. 

In Hofstein and Lunetta (2004), inquiry refers to diverse ways in which scientists study the 

natural world, propose ideas, and explain and justify assertions based upon evidence 

derived from scientific work. They elaborated that it also refers to more authentic ways in 

which learners carry out investigations and, in the process, sense the spirit of science. 

Learners who are motivated in science learning would most likely desire to carry out 

investigations to find solutions to science problems themselves than being told the 

answers.  

4.3.3.5. Engagement 

Engagement is another key contributor of quality learning and school success 

(Skinner, Furrer, Marchand, & Kindermann, 2008). Students’ engagement in learning 
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tasks keeps them involved in academic work and active in learning tasks that require 

continuous effort, determination, and perseverance, and is crucial for achievement 

outcomes (Fredricks, Blumenfeld, & Paris, 2004). There are diverse ways of 

conceptualizing engagement and different researchers may have different views as to how 

engagement should be defined. In the current study, I focused on the behavioral aspect of 

engagement and defined it in terms of students’ attention and participation in the learning 

tasks and classroom activities. 

4.3.3.6. Educational aspiration  

Among various science domains, physics seems to be the least attractive, and is 

probably the most problematic area, evidenced by the consistently fewer number of 

students taking physics courses than other sciences such as chemistry and biology 

(Durrani, 1998; Gillibrand, Robinson, Brawn, & Osborn, 1999). Measuring students’ 

desire to pursue physics education in the future is a good indication of the effectiveness of 

the physics lessons. Educators could identify the issues in physics learning and the 

processes that could be in place to inspire students to pursue physics learning.  

4.4. Method 

4.4.1. Participants 

Secondary 1 students (Grade 7) from a secondary school in Singapore participated 

in this study (N = 272; median age = 13 years old; 40% boys). All the students were of 

Chinese ethnicity, which is the largest ethnic group of Singapore (>75%). Although the 

students were Chinese in origin, they were effectively bilingual and over 50% of them 

spoke mostly English at home. All government schools in Singapore uses English as the 

medium of instruction and all students start formal English lessons in pre-school. The 

students were selected for admission into the participating school by merit of their PSLE 
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results, where only students with an aggregate score of about 240 (out of 300) and above 

would be admitted to this reputable school. There were also students with lower PSLE 

scores who were admitted to the school for other achievements such as sports excellence, 

but they were very few. The mean PSLE score for this sample was 242.85 (SD = 7.36).  

4.4.2. Material and Procedure 

Students’ motivation was measured by asking students to complete a survey in 

which they were asked to rate on a Likert scale of 1 to 6 on six motivational factors: self-

concept, self-efficacy, interest in physics, inquiry into physics problems, engagement 

during physics lessons and aspiration to pursue studies related to physics (Appendix 4A). 

The items were randomized in the survey form. Background information such as age, 

gender, and language background were also collected.  The variables were: 

4.4.2.1. Self-Concept 

Four items adapted from the Marsh (1992) Academic Self-Description 

Questionnaire (ASDQ) instrument were used to ask students about the cognitive 

component of their self-concept (i.e., sense of competence) in physics. Even though most 

schools teach secondary 1 science as an integration of the three main branches of science, 

physics, chemistry and biology, this school adopted a modular approach to science, where 

physics was taught separately from chemistry and biology, so students were able to 

differentiate their self-concept in physics from their self-concept in other areas of the 

curriculum. An example is: “I am good at physics”. 

4.4.2.2. Self-Efficacy 

The self-efficacy factor assessed students’ belief in their ability to master specific 

skills taught in physics classes. Five items adapted from the Pintrich, Smith, Garcia, and 

McKeachie (1993) Motivated Strategies for Learning Questionnaire (MSLQ) were used. 
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An example is: “I can do almost all the work in physics if I do not give up”. 

4.4.2.3. Interest 

This is the affective component of physics self-concept. The four items used for 

this factor were from Yeung, Kuppan, Foong et al. (2010) who adapted them from the 

Marsh, Craven, and Debus (1999) study, Elliot and Church’s (1997) measure of personal 

interest and enjoyment and the Yeung, Chow, Chow, Luk, & Wong (2004) measure of 

students’ affect in other curriculum areas. A total of four items were used to ask students 

about their interest in physics. An example is: “I enjoy doing physics”.  

4.4.2.4. Inquiry  

As inquiry is central to the science curriculum in Singapore and students are 

expected to engage in scientific inquiry, this measure was adapted from Yeung, Kuppan, 

Kadir et al. (2010). Three items asked students the extent to which they engaged 

themselves in scientific inquiry when solving physics problems and participating in 

physics learning tasks. An example is: “I do not like to be told answers to PHYSICS 

problems; I prefer to work through the answers myself”. The other two items were 

reversed, asking students the extent to which they refused to engage in inquiry (Appendix 

4A). 

4.4.2.5. Engagement 

The measure of individual engagement in physics was based on students’ report of 

their attention and participation in physics classes. The five items used to measure this 

factor was adapted from Steinberg, Lamborn, Dornbusch, and Darling (1992).  An 

example is: “I listen carefully when the teacher explains something about physics”. 

4.4.2.6. Educational Aspiration 

The measure of education aspiration asked students about their aspiration to learn 
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physics at advanced levels in the future. The four items for this measure were adapted 

from Yeung and McInerney (2005). An example is: “If I could do exactly what I wanted, I 

would like to study physics in future”. 

4.4.2.7. Achievement 

The measure of achievement comprised three sets of test scores from: (1) a nation-

wide standardized test called the Primary School Leaving Examination (PSLE), (2) a term 

test, and (3) a mid-year examination. The following provides details of each test.   

(1) PSLE scores. This is a standardized test (national examination) taken by all 

students in Singapore at the end of Grade 6 (final year in primary school). This nation-

wide standardized test assesses students in four main areas, namely, science, English, math 

and mother tongue (Chinese, for the sample in this study). Students were rated by PSLE 

examiners on a scale of six grades for each area of assessment: A*, A, B, C, D, E, and U 

(ungraded), A* being the highest grade and U, the lowest. The overall performance of a 

pupil was reported in terms of an Aggregate Score, which ranged from 0 to 300. This 

aggregate score was derived from the T-scores (i.e., Transformed Scores) of science, 

English, and math. The T-score was calculated based on a bell curve. For example, if the 

Science examination was too difficult with too many students performing badly, there is a 

potential increase of the raw science score, and vice versa if the examination has many 

students who scored high marks. The student’s actual score for individual area of 

assessment is not disclosed. Their examination scripts are neither returned to the students 

nor the school. The students’ PSLE scores (aggregate scores and grades) were obtained 

from the school. For the analysis in this study, a numerical value (score) was given to these 

grades, A* = 7, A = 6, B = 5, C = 4, D = 3, E = 2, and U = 1 (Table 4.2).  

(2) Test scores. Test scores were obtained from the school for each of the three 
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curriculum domains: science, English, and math. These test scores were the sum of the 

scores of several formative tests taken by the students during the first school term of Grade 

7 (i.e., first three months of the school year).  

(3) Examination scores. Examination scores were scores obtained from a summative 

assessment taken at the end of the first school semester of Grade 7 (after five months of 

school) for each of the three curriculum domains: science, English, and math. As physics 

was taught in the first semester as part as the school science curriculum, only physics 

content was tested in the science examination.  

 Procedures of the research were approved by the ethics committee of the 

university. Assent was obtained from students, and informed consent from the school, 

teachers, and the parents of the students were obtained before data were collected. The 

procedures of the survey were explained by the researchers and the students completed the 

survey via the school online portal.  The students responded to the survey items in a 

randomized order on a six-point Likert scale from 1 to 6, with 1 indicating strongly 

disagree and 6 indicating strongly agree. 

4.4.3. Statistical Analysis 

The students’ responses were coded (and some reverse-coded) to associate higher 

scores with more favorable responses. In preliminary analysis, the alpha reliability of each 

a priori scale formed from respective items. Then confirmatory factor analysis (CFA) was 

used to test the ability of 25 motivation survey items to form six motivational factors (i.e., 

self-concept, self-efficacy, interest, inquiry, engagement and educational aspiration).    

Mplus V7 (Muthén & Muthén, 1998–2015) was used to conduct the CFA. To 

evaluate the model fit, absolute fit statistics and incremental fit statistics were both used 

(Tanaka, 1993). The absolute fit statistics included χ2 tests of model fit and the root mean 
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square error of approximation (RMSEA; Browne & Cudeck, 1993). The incremental fit 

statistics included the Comparative Fit Index (CFI; Bentler, 1990) and the Tucker-Lewis 

Index (TLI; Tucker & Lewis, 1973), also known as the non-normed fit index (NNFI; 

Bentler & Bonett, 1980). The CFI and TLI vary along a 0 to 1 continuum in which values 

equal to or greater than .90 and .95 are considered as acceptable and excellent fits to the 

data, respectively. RMSEA values close to .05 indicate “close fit,” values about .08 

indicate “fair fit,” and values above .10 indicate “poor fit” (Browne & Cudeck, 1993). 

Based on commonly accepted criteria, support for model fit would require: (a) acceptable 

reliability for each scale (i.e., alpha = .70 or above), (b) an acceptable model fit (i.e., TLI 

and CFI = .90 or above and RMSEA < .08), (c) acceptable factor loadings for the items 

loading on the respective factors (> .30), and (d) acceptable correlations among the latent 

factors such that they would be distinguishable from each other (r < .90).  

4.5. Results 

4.5.1. Preliminary Analysis  

The mean score and the alpha estimate for each motivation factor are given in 

Table 4.1. All the six a priori motivational factors had acceptable alpha reliabilities ( 

= .93, .85, .91, .75, .87 and .85 for self-concept, self-efficacy, interest, inquiry, engagement 

and educational aspiration, respectively). These high reliabilities provided preliminary 

support for the motivational factors.  
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Table 4.1 

Variables Used in the Study to Measure Students’ Attitudes  
Factors of Attitudes  

towards physics 

Number of items for 

each factor 

Cronbach’s 

Alpha 

Mean SD 

Self-concept    4 .93 3.42 1.19 

Self-efficacy 5 .85 4.30 .78 

Interest 4 .91 4.16 1.06 

Inquiry 3 .75 4.37 .88 

Engagement 5 .87 4.71 .69 

Educational Aspiration 4 .85 3.69 1.02 

Note: N=272. Items were randomized in the survey. Higher scores reflected more 

favorable perceptions.  

 

 

A breakdown of the achievement scores is given in Table 4.2. As can be seen from the 

table, the minimum score for all curriculum domains was 4.00, implying that no student 

attained a grade poorer than C, and the maximum score was 7.00, which was the best 

grade, A*. The mean PSLE score for each curriculum domain was about 6.00, implying 

that the average student’s grade was A.  

 

 

Table 4.2 

Students’ Achievement Scores  
Students’ Achievement Mean SD Minimum Maximum 

PSLE   0 300 

PSLE Aggregate 242.85 7.36 202.00 263.00 

PSLE Science 6.09   .48 4.00 7.00 

PSLE English 6.01   .38 4.00 7.00 

PSLE math 6.36   .60 4.00 7.00 

TEST   0 100.00 

Test Science 64.01 10.34 38.40 88.70 

Test English 60.09 5.22 40.00 73.30 

Test math 74.34 10.69 35.30 95.30 

EXAMINATION   0 100.00 

Exam Science  65.67 8.90 27.00 88.00 

Exam English 60.95 4.49 39.00 70.00 

Exam math 75.44 10.12 57.00 86.00 

Note: N=272; PSLE aggregate scores were used for placement of students to this high-ability school. PSLE 

science, PSLE English and PSLE math grades were analysed as numerical scores (A*=7, A=6, B=5, C=4, etc). 

As no student scored a grade poorer than C, the minimum score is 4.   Test and examination scores were 

obtained from the school for respective curriculum domains. 
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4.5.2. Correlations between Students’ Attitudes towards physics  

The critical concern of this study was the association between achievement and 

motivation towards physics. An inspection of the correlations among the six science 

motivational factors (self-concept, self-efficacy, interest, inquiry, engagement, and 

educational aspiration) found significantly positive correlations among them (rs between 

.47 and .80). The highest correlation was between interest and educational aspiration in 

physics (r = .80), and the lowest correlation was between self-concept and inquiry in 

physics (r = .47) (see Table 4.3).  

4.5.3. Correlations between Students’ Achievement Scores (PSLE, Test & Exam)  

For achievement scores, some interesting patterns were found. Intuitively, I would 

expect PSLE scores to be substantially correlated. That is, in standardized tests, I would 

expect high-ability students to achieve well in most areas such that the correlations 

between domains would be expected to be substantially positive. Nevertheless, the results 

showed that although the correlation between math scores and science scores in PSLE was 

positive (r = .11), it was not statistically significant. The correlations between the English 

and science scores in PSLE (r = .06) and between English and math scores in PSLE (r = -

.05) were near zero and statistically non-significant.  

The respective correlations for the semester test scores showed a different pattern. 

Whereas the correlations between the English and science test scores in the semester (r = 

.06) and the correlation between English and math test scores (r = .05) remained to be near 

zero and statistically non-significant, the correlation between math and science test scores 

were positive and statistically significant (r = .51).    

 

 



CHAPTER 4: Study 2 – Achievement and Motivation 

 

149 

 

Table 4.3 

Solution of CFA Model  

Item 

no 
SC SE IT IQ EN EA PSc PEn PMa TSc TEn TMa ESc EEn EMa 

Factor Loadings           
S9Q10 .94 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S2Q6 .87 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S9Q3 .93 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S8Q6 .81 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S4Q1 .00 .75 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S8Q1 .00 .77 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S5Q10 .00 .77 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S7Q3 .00 .64 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S4Q9 .00 .75 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S10Q14 .00 .00 .92 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S5Q9 .00 .00 .91 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S8Q5 .00 .00 .72 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S1Q4 .00 .00 .83 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S4Q5 .00 .00 .00 .71 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S9Q1 .00 .00 .00 .63 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S9Q4 .00 .00 .00 .79 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S3Q1 .00 .00 .00 .00 .82 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S6Q7 .00 .00 .00 .00 .83 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S1Q2 .00 .00 .00 .00 .75 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S5Q4 .00 .00 .00 .00 .72 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S7Q8 .00 .00 .00 .00 .67 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S4Q7 .00 .00 .00 .00 .00 .79 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S10Q13 .00 .00 .00 .00 .00 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S2Q3 .00 .00 .00 .00 .00 .60 .00 .00 .00 .00 .00 .00 .00 .00 .00 

S10Q6 .00 .00 .00 .00 .00 .91 .00 .00 .00 .00 .00 .00 .00 .00 .00 

PSc .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 .00 .00 .00 .00 

Pen .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 .00 .00 .00 

PMa .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 .00 .00 

TSc .00 .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 .00 

TEn .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 .00 

TMa .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 .00 

Esc .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 .00 

EEn .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00 

EMa .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.00 

Factor Correlations             

 SC SE IT IQ EN EA PSc PEn PMa TSc TEn TMa ESc EEn EMa 

SC 1.00               

SE .70** 1.00              

IT .74** .78** 1.00             

IQ .47** .66** .65** 1.00            

EN .49** .60** .59** .57** 1.00           

EA .67** .68** .80** .57** .47** 1.00          

PSc .25** .20** .17** .07 .09 .15* 1.00         

PEn .04 .03 -.03 .08 .09 -.07 .06 1.00        

PMa .24** .14* .16** .08 .05 .14* .11 -.05 1.00       

TSc .54** .38** .39** .23** .31** .31** .25** .05 .23** 1.00      

TEn -.03 .01 -.08 .06 -.01 -.14* -.02 .40** -.04 .06 1.00     

TMa .39** .22** .26** .20** .26** .20** .14* -.03 .28** .51** .05 1.00    

ESc .59** .43** .42** .31** .41** .33** .32** .11 .26** .73** .21** .54** 1.00   

EEn .06 .05 -.06 .06 .10 -.08 .06 .42** -.05 .19** .73** .06 .37** 1.00  

EMa .43** .27** .31** .27** .33** .22** .13* -.06 .36** .55** .08 .81** .67** .11 1.00 
 

 
Note: N = 272. Parameters estimates are completely standardized. Motivation towards 

Physics include: SC: Self-concept; SE: Self-efficacy; IT: Interest; IQ: Inquiry; EN: 

Engagement; EA: Educational Aspiration; Achievement in science include: PSc: PSLE 

science; PEn: PSLE English; PMa: PSLE math; TSc: Science Test; TEn: English Test; TMa: 

math Test; ESc: science Exam; EEn: English Exam; EMa: math. *p<.05. **p<.001.  PSLE 

science, PSLE English, and PSLE math correlated with PSLE.  
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The respective correlations for the semester examination scores showed another 

pattern. For this end-of-first-semester examination, the correlations between the English 

and science scores (r = .37) was higher than the correlation between English and math 

scores (r = .11). The correlation between math and science scores were positive and 

statistically significant (r = .67).  

Between the PSLE scores and the semester test scores, however, there was a clear 

domain-specific pattern. Positive correlations were found between PSLE and semester test 

scores for science (r = .25), English (r = .40), and math (r = .28). Whereas English scores 

in PSLE did not correlate with semester math and science test scores (rs = -.03 and .05, 

respectively) and semester English test scores did not correlate with math and science 

scores in PSLE (rs = -.04 and -.02, respectively), positive and statistically significant 

correlations were found between PSLE math and semester science test (r = .23) and 

between PSLE science and semester math test scores (r = .14), although these correlations 

were not as strong as domain-specific correlations for each domain (Table 4.3).  

The correlations between PSLE scores and the semester examination showed a 

clearer domain-specific pattern. Higher positive and statistically significant correlations 

were found between PSLE and semester examination for science (r = .32), English (r = 

.42), and math (r = .36). Whereas English scores in PSLE did not correlate with semester 

math and science examination scores (rs = -.06 and .11, respectively) and semester English 

examination scores did not correlate with math and science scores in PSLE (rs = -.05 and 

.06, respectively), positive and statistically significant correlations were found between 

PSLE math and semester science examination scores (r = .26) and between PSLE science 

and semester math examination scores (r = .13), although these correlations were not as 

strong as domain-specific correlations for each domain (see Table 4.3).  
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4.5.4. Correlations between Students’ Achievement and Attitudes towards physics 

An inspection of the correlations of each achievement score with the students’ 

motivation towards physics found some interesting patterns (see Table 4.3). Weak 

correlations were observed between students’ motivation towards physics and their PSLE 

scores; the weakest being with inquiry in physics (rs= .07, .08 and .08 with PSLE science, 

English and math, respectively), followed by engagement (rs= .09, .09 and .05 with PSLE 

science, English and math, respectively). As for the other motivational factors, higher 

correlations were found with PSLE science and PSLE math than with PSLE English. 

PSLE English had the lowest correlations with all of the motivational factors towards 

physics, which were statistically non-significant  

Another interesting finding was that even though domain specificity was observed 

(science achievement scores were more highly correlated to science self-concepts and 

motivation towards science, compared to other curriculum domains), the correlations of 

achievement with students’ motivational factors were stronger with more recent 

achievement scores. For example, Grade 7 physics achievement had higher correlations 

with Grade 7 physics motivation than Grade 6 science achievement. This pattern of 

stronger correlations of achievement over time with students’ motivation towards physics 

was also observed with math achievement scores (i.e., Grade 7 math achievement had 

higher correlations with Grade 7 physics motivation than Grade 6 math achievement) but 

not with English achievement scores.   

4.6. Discussion 

Whereas students’ learning experiences in different domains tend to have distinctly 

different influences on their development of skills and motivation, competence in certain 

domains may help students’ self-development in other related domains. For example, 
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correlation (r = .52) between semester math and physics test scores and between semester 

math and physics examination scores (r = .67), although smaller than those within the 

same subject domain, were positive and statistically significant. This could be because the 

effective learning of physics often requires the knowledge of math and related logical 

thinking.  Correlations of students’ motivation towards science (i.e., physics here) with 

PSLE math scores were also similar to the correlations with PSLE science. It seems that 

the science and math achievements in PSLE may have very similar relations with students’ 

motivation towards science (i.e., physics) in Grade 7. 

Based on these results, there seem to be some close relations between physics and 

math. For example, math achievement is not only positively associated with math 

motivation but is also positively associated with physics achievement. A probable reason 

for this could be that students who achieve well in math may feel equipped with 

mathematical skills necessary to do well in physics, thus having positive attitudes towards 

physics. This new understanding of students’ academic motivation would enable us to help 

students build up their self-concept and enhance their motivation in new learning areas 

such as physics in secondary school.  

As for the motivational attitudes, the correlations of students’ motivation towards 

science (i.e., physics) with PSLE science scores are not high. This means that science 

achievement in PSLE (or in primary school) may not be very important for positive 

attitudes towards science in secondary school. This finding is contrary to the assumptions 

held by most parents and some teachers that PSLE scores will determine students’ positive 

attitudes towards that subject in secondary school. Based on similar findings with math, an 

inspection of math achievement in PSLE also showed weak relations with students’ 

motivation towards physics. In contrast, the science achievement scores in Grade 7 has 
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significant relations with students’ motivation towards science and such relations tend to 

grow stronger over time, based on the positive correlations (Table 4.3) between students’ 

motivation and examination scores (taken at the end of the semester) than with test scores 

(taken within the first 3 months in Grade 7).  The implications for this is that focus should 

be given to developing good school science curriculum in Grade 7, as no matter what their 

PSLE science scores were in the past, students can develop positive attitudes towards 

science in secondary school. 

Math achievement follows a similar pattern as above. Math achievement scores in 

Grade 7 has significant relations with students’ motivation towards physics and such 

relations tend to grow stronger over time as well (i.e., positive correlations showing a 

higher correlation between students’ motivation and examination scores than with test 

scores), although not as strong as the relations between science achievement and attitude 

towards physics. Having a good curriculum for math may improve students’ achievement 

in math, which may positively influence students’ motivation in physics, to some extent. 

However, further research will be necessary to test this implication. 

Since students’ achievement in Grade 6 does not seem to have much bearing on 

students’ motivation towards physics in the first semester of secondary school, Grade 7 

may thus be a critical time for developing positive attitudes towards physics. For physics 

education, it is important not only to improve physics achievement, but also to enhance 

motivation towards physics at an early stage in secondary school. It also seems crucial to 

enhance skills in math as well.  

One of the limitations of this study is the sample of high-ability students. Even 

though I may claim contribution to the understanding of higher-ability students’ 

achievements in their relation to students’ motivation towards physics, I am unable to 
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generalize it to the whole Grade 7 student population.  However, the findings in this study 

have important implications that could be beneficial to many other students.  

Educators need to be aware of the students’ development of motivation towards 

physics in order to provide them with the best learning environment to optimize their 

potential.  Since there are significant correlations between the science and math domains, 

curriculum could be designed such that the lessons learned from each of these domains 

complement each other to strengthen students’ skills in both domains. Further implications 

for parents and educators are that while it is not too late to develop positive attitudes 

towards science, there should not be complacency that good academic achievement in the 

past will guarantee good attitudes towards physics in the future. An engaging and 

interesting physics curriculum is necessary to enhance students’ positive attitudes and help 

them excel in the domain.  
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CHAPTER 5: STUDY 3 -                                                                                                              

Element Interactivity as a Construct for the Analysis of Science 

Problem- Solving Processes 

 

5.1. Preface 

The overarching aim of this thesis is to examine the associations between the cognitive and non-

cognitive aspects of students’ learning. Whereas Study 1 and Study 2 focused on examining the 

relations between achievement and motivation (i.e., cognitive and non-cognitive outcomes of 

learning, respectively), Study 3 focuses on the cognitive aspect of learning by investigating 

student learning processes which lead to student achievement. Research has shown that by 

analyzing the interacting elements in problem solving tasks, student learning processes can be 

better understood, and instruction could be designed accordingly to maximize learning effects. 

Thus, Study 3 uses element interactivity as a construct to analyze students’ problem solving 

processes in science. The findings will (1) show how learning tasks can be analyzed in terms of 

element interactivity to assess their suitability for students, (2) shed light on students’ level of 

expertise based on their choice of problem solving strategies, and (3) guide lesson design and 

instruction to ensure that the learning materials are suitable for students’ cognitive levels and not 

cause cognitive overload.   
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5.2. Abstract 

Element interactivity is a construct that is used by cognitive load theory to explain the 

complexity in learning tasks.  Despite advances in cognitive load research, element 

interactivity in science problem solving has not been vastly studied. To illustrate how element 

interactivity gives rise to different types of cognitive load (intrinsic, extraneous, and germane), 

the ways a group of high-ability Grade 8 students solve a complex science problem were 

analyzed. Results showed that students who broke down their solutions and managed lower 

element interactivity scored higher marks. The majority of students used multiple operational 

lines of low element interactivity and they were found to be in the intermediate stages of 

developing expertise. The findings provide practitioners with a useful approach to evaluating 

instruction, learning materials, and student expertise, and to design effective pedagogies to suit 

the needs of students based on their level of expertise. 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5: Study 3 – Element Interactivity Analysis 

 

157 

 

5.3. Introduction 

The purpose of this study is to revisit the conceptualization of cognitive load theory 

(CLT; Sweller, 1988; Sweller, Ayres, & Kalyuga, 2011) by examining the cognitive processes 

involved during science problem solving, with a focus on element interactivity, or the degree to 

which learning comprises elements that cannot be learned in isolation. Science problem solving 

is commonly perceived as a complex learning task due to the need to simultaneously process 

multiple elements of information. Unless instruction is designed to manage the high cognitive 

load involved, learning effectiveness may be compromised. Recent literature has shown that 

element interactivity may be a useful construct for understanding learners’ involvement in and 

mastery of complex tasks (e.g., Ayres, 2013; Beckmann, 2010; Ngu, Yeung, & Tobias, 2014). 

However, there is limited research on the links between element interactivity, cognitive load, 

and students’ problem solving in science.  Also, CLT studies have shown that students’ pre-

existing knowledge in the domain affects the level of element interactivity that they are able to 

manage in the domain (Sweller et al., 2011), but have not suggested an effective measure to 

determine students’ pre-existing knowledge. To address these gaps in the literature, I used 

element interactivity as a construct to (1) determine how the interaction of elements in a 

science word problem may incur various types of cognitive load, and (2) analyze students’ 

problem solving processes and categorize their expertise level in order to estimate their pre-

existing knowledge in the domain. My illustration of the analyses could guide educators to 

design learning tasks and instruction that match students’ existing knowledge levels (i.e., 

expertise) in the domain to optimize learning. 

In the following, element interactivity is defined, and the challenges faced by secondary 

school students in science problem solving are discussed. I will analyze the cognitive structures 

and processes involved when students attempt to solve science word problems. They include: 

limitations of working memory (WM), the effects of different types of cognitive load, and 
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element interactivity in WM. I will illustrate element interactivity by examining how solving a 

science problem on ‘speed’ imposes three types of cognitive load on the students, which can 

then be used to modify and optimize the suitability of learning tasks. The tenet is that by 

analyzing problem solving processes and students’ work in terms of element interactivity, it is 

possible to analyze almost any learning task for the inherent difficulties presented to learners. 

Accordingly, educators will be able to modify pedagogies to suit students’ knowledge levels 

and progress science education to a new level.  

5.3.1. Element Interactivity and Cognitive Load Theory 

Cognitive load theory (CLT) is an instructional theory developed to address arising 

cognitive issues during human cognitive processes (Paas, Renkl, & Sweller, 2003; Sweller, 

1988; Sweller, van Merriënboer, & Paas, 1998). CLT guides instructional designs to improve 

learning (Sweller, 2012; Sweller et al., 2011), by making the cognitive load involved in the 

mental processing of instructional materials more manageable for learners (Yeung, 1999).  

CLT suggests that the degree of complexity of information in a learning task can be 

gauged by element interactivity (Leahy, Hanham, & Sweller, 2015). Sweller (2010) defines an 

element as “anything that needs to be or has been learned, such as a concept or a procedure” (p. 

124). He explained that a learning task has low element interactivity if it comprises elements 

that can be learned in isolation, without much reference to other elements. In contrast, a 

learning task has high element interactivity if it comprises elements that cannot be learned in 

isolation, as they heavily interact and need to be simultaneously processed before meaningful 

learning can occur (Leahy et al., 2015; Sweller et al., 2011). A learning task with high element 

interactivity is normally considered to be complex for novice secondary school students (i.e., 

students who lack pre-existing knowledge in the domain of the learning task). In general, most 

novices will find it difficult to manage the simultaneous interactions of elements, resulting in 

cognitive issues (Kadir, Ngu, & Yeung, 2015).  



CHAPTER 5: Study 3 – Element Interactivity Analysis 

 

159 

 

Despite this emphasis within CLT on element interactivity as reflective of cognitive 

load, little research has made element interactivity a focus of analysis to guide instructional 

design. I argue that if problems are analyzed in terms of element interactivity, areas of high 

cognitive load can be effectively identified and adjusted to suit all learners’ needs.  

This study shows how CLT is applied using the concept of element interactivity as a 

theoretical framework in the analysis of a complex science word problem for junior secondary 

students. It demonstrates how Grade 8 students’ solutions to a science problem dealing with 

speed can be analyzed in terms of ‘operational lines’. An ‘operational line’ shows the 

application of an operation to change the problem state of the equation and yet at the same time 

to preserve the equality of the equation (Kadir et al., 2015). In the study by Ngu et al. (2014), 

students who used operational lines with lower element interactivity to solve a problem 

reported less mental effort and performed better than students using operational lines with high 

element interactivity. In this study, operational lines were measured by counting the number of 

lines (also known as steps) that a student used as part of their solution to the problem, with 

each line having one or more mathematical operations such as multiplication, addition, or 

division. Students’ expertise in problem solving can be inferred by the number of operational 

lines used to solve a problem. This is because students with a high level of expertise tend to 

omit steps or combine several operational lines (Star & Newton, 2009). In contrast, students 

with lower levels of expertise tend to use more operational lines, where the element 

interactivity within each operational line is relatively low. Even though students’ test scores 

may provide an indication of their expertise in the domain, for students scoring the same 

marks, fewer operational lines could reflect students’ ability to manage higher element 

interactivity.  In this regard, element interactivity could provide more information about a 

student’s expertise beyond test scores.  
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5.3.2. Challenges in Science Problem Solving   

Students’ expertise in science problem solving, especially in the domain of physics, 

may be reflected in the way they solve problems in the domain (Ngu, Chung, & Yeung, 2015). 

Students who are experts in the domain would be able to manage high element interactivity 

(Sweller et al, 2011), so their solutions to problems would most probably comprise fewer lines 

of high element interactivity. On the contrary, students who are new learners (i.e., novices) and 

therefore lack the relevant knowledge in the domain, may use many operational lines with low 

element interactivity or may not solve the problem at all if they do not have any pre-existing 

knowledge required to solve the problems. As students in school are usually novices, physics 

problem solving tasks generally impose a heavy burden on students’ WM, as solving the 

problems require simultaneous processing of conceptual and procedural knowledge from the 

domains of science and mathematics (Kadir et al., 2015). Such challenges to science problem 

solving and learning may be why science, especially physics, is widely perceived to be a 

difficult subject in school (Shen & Pedulla, 2000).  

5.3.2.1. Conceptual and procedural knowledge  

 In this study, the definitions of conceptual and procedural knowledge apply to both 

science and mathematics, since students need to apply both types of knowledge in both 

domains concurrently in order to solve physics problems effectively (see DFE, 1995; SOED, 

1993). Conceptual knowledge is ‘knowing that’ and procedural knowledge is ‘knowing how’ 

(Ryle, 1976). In science, conceptual knowledge is “the factors and mechanisms which underpin 

key events” and procedural knowledge is “the controlled manipulation of factors, the 

prediction and observation of outcomes, and the utilization of observations to draw 

conclusions” (Howe, Tolmie, Duchak-Tanner, & Rattray, 2000, p. 362). In mathematics, 

conceptual knowledge is usually defined as “an integrated and functional grasp of 

mathematical ideas” (Kilpatrick, Swafford, & Findell, 2001, p. 118) and procedural knowledge 
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is the “ability to execute action sequences to solve problems, including the ability to adapt 

known procedures to novel problems” (Rittle-Johnson, & Star, 2007, p. 562). Procedural 

knowledge is the ability to construct mathematical operational lines that will arrive at the final 

answer of average speed. The operational lines constructed will be based on both the 

procedural and conceptual knowledge of average speed as well as the algorithms used. The 

simultaneous applications of conceptual and procedural knowledge for both mathematics and 

science are necessary for students to successfully solve physics problems (Kadir et al., 2015).  

5.3.2.2. High element interactivity  

Physics problem solving tasks are usually categorized as having high element 

interactivity as the tasks usually require problem-solvers to simultaneously process multiple 

elements of conceptual and procedural knowledge from science and mathematics (Kadir et al., 

2015). As novices have inadequate existing knowledge in the domain, it makes it difficult for 

them to integrate new information (Chi, Glaser, & Rees, 1982), without overloading their WM. 

Teachers need to be able to estimate the level of element interactivity in the learning materials 

to ensure that novices’ WM is not overwhelmed.  

5.3.3. Cognitive Processes Involved in Science Problem Solving 

Understanding the human cognitive processes is important for us to make sense of 

students’ learning capabilities and limitations. Figure 5.1 illustrates a model of the human 

cognitive processes when students are involved in learning tasks such as science problem 

solving. The model is based on the components of the human WM advanced by Baddeley and 

Hitch (2000), which was illustrated by Chinnappan and Chandler (2010) and modified by 

Kadir et al. (2015).  
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Figure 5.1. Model of human cognitive processes related to element interactivity during 

learning.  

 

 

5.3.3.1. Sensory memory  

The sensory memory of the brain (top of the model in Figure 5.1) receives incoming 

signals and information when students are given a cognitive task.  When students give the 

cognitive task enough attention, the input from the sensory memory is passed on and processed 

in the WM of the brain system (Baddeley, 1986). That is, active processing begins when the 

learner is motivated or has the intention of attempting the cognitive task. 

5.3.3.2. Working memory  

Working memory (WM) is defined by Baddeley (1986) as “the temporary storage of 

information that is being processed in any range of cognitive tasks” (p. 43). It is a cognitive 

structure where current and active mental processing takes place but can only manage to 

process a few elements of information at any time because it has a limited capacity (Miller, 
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1956) and duration (Peterson & Peterson, 1959). If WM limitations are exceeded, learning and 

understanding is compromised. On the contrary, if the processing of the elements is within the 

capabilities of WM, the information will be successfully processed and learning will occur. 

Whenever students are involved in any form of mental activity, their WM experiences 

cognitive load (middle of the model in Figure 5.1).  

The three types of cognitive load identified by CLT are: intrinsic, extraneous, and 

germane (Paas et al., 2003). Interacting elements in the learning material impose intrinsic 

cognitive load (Ayres, 2013). Sub-optimal instruction results in inefficient problem solving 

methods and impose extraneous cognitive load on WM (Sweller et al., 2011). The processing, 

encoding, and organization of new science knowledge into schemas to be retained in LTM for 

future use (Figure 5.1), is called germane cognitive load. Learners require enough WM 

resources to be available for the cycle of constructing, retrieving, and automating schemas 

(germane cognitive load in Figure 5.1) for successful learning and this should be the primary 

aim of effective instruction. The involvement of the three types of cognitive load in terms of 

element interactivity will be described later.  

5.3.3.3. Long-term memory  

When information is successfully processed through WM, schemas are constructed and 

transferred to long-term memory (LTM) and stored there (bottom of the model in Figure 5.1). 

In contrast to WM, LTM has unlimited capacity (Landauer, 1986) as there are no known limits 

to its immeasurably large storage space (Newell & Simon, 1972). Hence, it can store an infinite 

amount of information that has been processed by WM (i.e., schemas).  

5.3.3.4. Schemas  

Schemas are “general knowledge structures that encapsulate numerous elements of 

information into a single element” (Carlson, Chandler, & Sweller, 2003, p. 629). Successful 

learning results in the construction of schemas, which are hierarchically organized and stored 
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in LTM (Kalyuga, Ayres, Chandler, & Sweller, 2003) for easy retrieval (Valcke, 2002). 

Whenever the need arises, these schemas are retrieved from LTM, interact with new elements 

in WM, and then higher-level schemas are generated (Newell & Simon, 1972), and stored in 

LTM. These new schemas are especially useful for problem solving as they help the learner to 

classify a variety of problem states and select the most suitable solution for a specific problem 

(Chi et al., 1982). Schemas reduce element interactivity and WM load during problem solving 

because multiple and interacting elements in a schema can be treated as a single element 

(Sweller et al., 2011). 

5.3.3.5. Schema automation  

Learning new concepts or solving new science problems requires controlled and 

conscious effort, which imposes a heavy burden on WM (Carlson et al., 2003). However, with 

extensive practice over time, cognitive processing becomes automated, resulting in schema 

automation (Ericsson, 2005). Schema automation is critical for problem solving transfer 

(Sweller et al., 2011) where learners apply learned knowledge to new situations and contexts. 

Automated schemas enable information to be processed with less effort through the limited 

WM (Carlson et al., 2003). This facilitates the construction of new schemas of higher 

complexity, which increases learners’ expertise in the domain (Ericsson, 2006a). 

5.3.4. The Present Study 

In the present study, element interactivity is used as a construct to analyze (1) a science 

word problem and (2) students’ problem solving processes (see Figure 5.2). The analysis of a 

science word problem will determine (1a) the complexity of the science problem (intrinsic 

cognitive load), (1b) cognitive load that does not contribute to learning (extraneous cognitive 

load), and (1c) cognitive load that contributes to knowledge and skills acquisition (germane 

cognitive load).  The analysis of the students’ problem solving processes in terms of 

operational lines will enable us to categorize their level of expertise in the domain to (2a) 
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novice, (2b) intermediate and (2c) expert, based on the level of element interactivity that they 

are able to manage.  The illustration of the analyses of this study may be useful for teachers 

when designing or evaluating instruction and assessments for science problems, and to ensure 

that the learning materials are suitable for students, given their level of expertise. I also 

examined (3) the relationship between the number of operational lines (i.e., lines showing 

mathematical operations such as multiplication, addition, division, etc.) that students used to 

solve a complex science problem and their final score for that problem, as well as (4) the 

number of operational lines used by perfect-score students (i.e., successful problem solvers). 

Analyses from (3) and (4) will illustrate how element interactivity can inform us more about 

students’ level of expertise beyond test scores.  See Figure 5.2 for an overview of the study. 

 

  

Figure 5.2. An overview of the present study.  
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5.4. Method 

5.4.1. Participants 

Grade 8 students (N=260, mean age=13.5 years) from a selective secondary school in 

Singapore were randomly selected by the school teachers to participate in the study. These 

students gained admission to the school by the merit of their scores at a national examination 

taken at the end of Grade 6, in which they performed better than 70% of their peers in the 

cohort, so they were considered to have ‘higher than average’ ability. These students were 

selected for this study because I wanted to have a high percentage of students who would 

attempt the problem for analysis purposes. A pilot trial with lower-ability students found that 

many students did not attempt the problem (i.e., left it blank), making element interactivity 

analysis impossible. Nevertheless, the results from this high-ability sample could provide 

insights into optimizing learning opportunities for the general student population.  

 All 121 boys and 139 girls who participated in the study were asked to solve a problem 

task. They were told that the problem task was just a quiz, that their marks would not be used 

to calculate their total science assessment scores for the year, and that they were free to use any 

approach to solve the problem. Students were unlikely to undertake any last-minute revision of 

any learning materials related to the topic, as they were not told what topic the problem would 

be related to. Students would therefore rely on their existing schemas in their long-term 

memory to solve the problem. With no performance requirements, the Grade 8 students were at 

liberty to choose their own approaches to solve the problem. All students were given the same 

amount of time (10 minutes) to complete the novel problem, and were supervised by their 

teachers, in silence. 

5.4.2. Material 

 The science word problem concerning speed (Figure 5.3a) was designed by a science 

teacher in Singapore as an assessment item to evaluate students’ conceptual and procedural 
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knowledge of speed related concepts. The total marks (2), were based on a marking rubric 

designed by and cross-checked by teachers in the school. 

 

a. 

 

b.  

 
Figure 5.3. Science problem on speed.  

Note. (a) Problem statement. (b) Methods to solve the science problem on speed. 

 

 

 To effectively solve this problem, students need to apply this formula: 
Average speed = total distance travelled by car / total time taken 

However, students are required to manipulate the formula using the concept of algebra to find 

the distance, which is not given in the problem:  

distance = average speed X time 

Method 1 using the step by step method  Method 2 using the combined method 

Step 1 

line 1 

line 2 

Distance travelled from 12pm-2pm 

= 75 km/h X 2 h 

= 150 km 

Step 1  

line 1 

line 2 

line 3 
line 4 

Average speed  

= total distance travelled by car / total time 

= [(75X2) + (0X1) + (70X3)]/ 2+1+3 

= (150 km  + 0 km + 210 km) / 6 h 

= 360 km / 6 h 

= 60 km/h 

Step 2 

line 1 

line 2 

Distance travelled from 2pm-3pm 

= 0 km/h X 1 h 

= 0 km 

  

Step 3 
line 1 

line 2 

Distance travelled from 3pm-6pm 
= 70 km/h X 3 h 

= 210 km 

  

Step 4 

line 1 

line 2 

Total distance travelled by car 

= 150 km  + 0 km + 210 km 

= 360 km  

  

Step 5 
line 1 

line 2 

Total time taken by car 
= 2 h + 1 h + 3 h 

= 6 h 

 

  

Step 6  

line 1 

line 2 

Average speed  

= total distance travelled by car / total time 

= 360 km / 6 h 

= 60 km/h 

  

 



CHAPTER 5: Study 3 – Element Interactivity Analysis 

 

168 

 

5.4.3. Procedure and Data Analysis 

 Students’ responses were analyzed in terms of the number of operational lines used to 

solve the problem and the total marks awarded by teachers. The students’ responses were then 

given to two researchers for marking. Given the time constraints to solve the problem, I would 

expect the students to use the most efficient method to solve the problem, given their level of 

expertise in the domain.  

5.4.3.1. Operational lines  

Analysis of students’ responses to the problem in terms of operational lines provided an 

indication of the level of element interactivity that students were able to manage. Students with 

a lower level of expertise (i.e., novices) were expected to use more operational lines as the 

element interactivity in each operational line will be low and more manageable.  Students with 

higher domain expertise were expected to use less operational lines since they would invoke 

higher element interactivity within each operational line. Two researchers independently coded 

the students’ responses in terms of operational lines, with an inter-rater agreement of 80%, 

which went up to 100% after a round of discussion. An operational line has to have at least one 

operation (i.e., multiplication, addition, or division). The final answer was not counted as an 

operational line. Figure 5.4 shows samples of students’ solutions and how the operational lines 

were coded.  
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a.  

 

b.  

 

 

 

c.  

 

d. 

 

e.  

 

Figure 5.4. Sample of students’ responses to the science problem.  

Note. (a) Example of a solution that was awarded 0 mark. It is conceptually wrong because speed 

(instead of distance) was summed and divided by the total number of speed (instead of time). 

One operational line was used to solve the problem. (b) Example of a solution that was awarded 

1 mark. It is conceptually right, based on the 2nd operational line but mathematical calculations 

were wrong (i.e., it should be 360 instead of 290). Three operational lines were used to solve the 

problem. (c)  Example of a solution resembling Method 1. Six operational lines were used to 

solve the problem. This solution was awarded the full marks of 2. (d)  Example of a solution 

resembling Method 2. One operational line was used to solve the problem. This solution was 

awarded the full marks of 2. (e) Example of a solution resembling an intermediate stage between 

Method 1 and Method 2. Three operational lines were used to solve the problem. This solution 

was awarded the full marks of 2.  

 

1 operational line  

2nd operational line 

3rd operational line 

1st operational line   

 

1st operational 

line 

 

2nd operational 

line 

 

3rd operational 

line 

 

5th operational 

line 6th operational 

line 

 

 

4th operational 

line 

 

1 operational line  

1st operational line 

2nd operational line 

3rd operational line 
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5.4.3.2. Marks  

Students’ solutions to the problem task were awarded 0 mark, 1 mark, or 2 marks. A 

perfect score of 2 was awarded to students who applied their conceptual and procedural 

knowledge successfully and performed the operations correctly. Students who made some 

minor mistakes such as calculation errors or using incorrect units of measurement, but were 

able to show conceptual understanding (e.g., dividing the total distance travelled by the total 

time taken) were awarded 1 mark. Students who demonstrated incorrect conceptual 

understanding of the problem were awarded zero mark. Figures 5.4a and 5.4b show examples 

of students’ solutions awarded zero and one mark, respectively. A correlation analysis was 

conducted to investigate the relations between students’ operational lines and their marks for 

the problem solution. The number of operational lines used by students who received perfect 

scores was also noted.  

5.5. Results and Discussion 

5.5.1. Analysis of a Science Problem in terms of Element Interactivity   

Element interactivity can be measured by estimating the number of interacting elements 

that need to be simultaneously processed before the learning task can be successfully 

understood or completed (Sweller & Chandler, 1994). This measurement has been used by 

several researchers in various learning areas (e.g., Carlson et al., 2003; Leahy et al., 2015; 

Tindall-Ford, Chandler, & Sweller, 1997). To assess element interactivity, relevant 

assumptions about the learners are required, since a single element for an expert who has 

existing domain-specific schemas may equate to many elements for a novice (Sweller et al., 

2011). 

In the element interactivity analysis that follows, assumptions about learners include: 

(a) a good understanding of the language used in the problem so as to understand the problem 

statement (i.e., the general message of the word problem was considered as one element); (b) 
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relevant knowledge of the concept of speed; (c) basic mathematical skills expected of lower 

secondary students (i.e., an operation such as multiplication, addition, or division was 

considered as one element); and (d) necessary skills to interpret a table of values (i.e., table 

interpretation was considered as one element) to solve the problem.  

While element interactivity in intrinsic cognitive load is frequently assessed, it is not 

usually done for extraneous and germane cognitive load. To illustrate the element interactivity 

in all three forms of cognitive load, I analyzed the science word problem on ‘speed’ (Figure 

5.3a) within each type of load. The following section first defines and then analyses each type 

of cognitive load (i.e., intrinsic, extraneous, and germane) in terms of element interactivity in 

the word problem.  

5.5.1.1. Intrinsic cognitive load  

According to Sweller (2010), “the level of intrinsic cognitive load for a particular task 

and knowledge level is assumed to be determined by the level of element interactivity” (p. 

124).  Therefore, intrinsic cognitive load can be estimated by examining the number of 

elements and the interactions among them (Sweller & Chandler, 1994; Tindall-Ford et al., 

1997), using the above-mentioned assumptions as a basic guide.  

In order to solve the word problem on speed, students needed to understand its 

objective by reading the words and studying the numbers and units (i.e., magnitudes) in the 

problem statement. An additional element was that students needed to attend to the data table 

containing multiple values of time and average speed. Intrinsic cognitive load constitutes the 

element interactivity involved with simultaneously understanding the words and magnitudes in 

the problem statement as well as the interpretation of the table of values. Since magnitudes for 

the total distance and total time were not directly provided in the problem, students needed to 

deal with four main sub-goals of the problem in order to calculate average speed by: (1) 

calculating the distance travelled during each of the three time intervals by manipulating the 
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average speed formula; (2) adding individual distances to get the total distance travelled; (3) 

deriving the time from the time intervals (e.g., 12 pm to 2 pm means a time interval of 2 

hours); and (4) summing the times to get the total time travelled for the journey. Novices 

would be expected to experience a high level of element interactivity in the problem to solve 

these sub-goals resulting in a high intrinsic cognitive load. They would perceive this problem 

as complex because of the high number of interacting elements that need to be processed 

concurrently in their limited WM space. 

5.5.1.2. Extraneous cognitive load  

The presentation style of instructional materials influences extraneous cognitive load 

(Leahy et al., 2015). Since extraneous cognitive load does not contribute to learning (Sweller, 

2010), it should be kept minimal. Reducing extraneous cognitive load would free up WM 

resources to manage the complexity of the learning material and may contribute to learning. 

Element interactivity is not commonly used to explain extraneous cognitive load (Beckmann, 

2010). While Sweller (2010) proposed that element interactivity should be a major source of 

extraneous cognitive load as well as intrinsic cognitive load, it is not until recently that 

researchers have started to explore how extraneous cognitive load can be attributed to element 

interactivity (e.g., Kadir et al., 2015).  

Students who experience sub-optimal instruction tend to engage in cognitive activities 

that do not enhance schema acquisition, which impose extraneous cognitive load (Sweller et 

al., 2011). An example of such an activity is the ‘backward-working phase’ (Larkin, 

McDermott, Simon, & Simon, 1980) or the ‘means-ends analysis’ (Newell & Simon, 1972), 

where problem solvers simultaneously consider: (a) the current problem state, (b) goal state, (c) 

differences between the current problem state and the goal state, (d) problem solving operators 

that are able to reduce the differences between the two states, and (e) sub-goals that have been 

established (Sweller, 1988). The simultaneous processing of elements (a) to (e) results in 
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element interactivity that imposes extraneous cognitive load.  

Problem solving experts work through solutions with procedural moves that are mostly 

automated, through retrieval of relevant problem-type schemas that exist in their LTM (Reed, 

1993), which are then integrated with the information in the problem to arrive at a solution 

(van Lehn, 1989). Expert problem solvers draw “on the extensive experience stored in their 

long-term memory and then quickly select and apply the best procedures for solving problems” 

(Kirschner, Sweller, & Clark, 2006, p. 76), reducing the element interactivity that constitutes 

extraneous cognitive load.  

Instructional designs may introduce extraneous cognitive load in specific ways (Sweller 

et al., 2011). Figure 5.3b illustrates two methods, Method 1 and Method 2, of teaching students 

to solve the word problem. Method 1 comprises six operational lines while Method 2 combines 

the six operational lines into a one-step solution. Every operational line in the solution for 

Method 1 has low element interactivity because each involves two elements undergoing just 

one operation (e.g., multiplication, addition, or division) between them. Thus, each operational 

line, when considered in isolation, constitutes a low cognitive load. Method 1 is suitable for 

teaching novices to solve the problem as each operational line clearly shows the knowledge 

being applied and the procedures that follow. The low element interactivity helps students to 

manage their thought processes more effectively without overloading their WM. Figure 5.4c 

shows a sample of a student’s work using an approach similar to Method 1 to solve the 

problem. Even when a student scored full marks using this approach, the schemas retrieved 

would not be complex enough for constructing an operational line of high element interactivity. 

In this study, 11 out of 204 students who got full marks (5.4%) solved the problem using this 

method resulting in six operational lines, and three students who got full marks (1.5%) used 

even up to eight operational lines (see Table 5.1). The low percentage of students using six or 

more operational lines shows that only a few students were novices in this domain.  
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Table 5.1 

Results of Students’ Problem-Solving Processes and Performance (N=260) 

Marks 
awarded 

Number 
of 

students 

Number of Operational Lines used to solve problem 

1 2 3 4 5 6 7 8 

0 31 13 9 8 0 1 0 0 0 

1 25 3 4 6 8 2 2 0 0 

2 204 44 38 47 42 19 11 2 1 

 

 

By way of contrast, Method 2 comprises one step with high element interactivity, 

involving nine values undergoing three different operations (i.e., multiplication, addition, and 

division) simultaneously, requiring a lot of WM resources. For example, to complete the single 

step in Method 2, students have to simultaneously: 

(1) apply the formula to calculate average speed = total distance / total time taken, 

(2) substitute the respective quantities for each variable (i.e., total distance and total 

time),  

(3) calculate the quantities of total distance and total time taken from the table of 

values because they are not directly provided, which requires an algebraic 

manipulation of the formula of average speed (i.e., average speed = total distance 

/ total time), making total distance the subject (i.e., total distance = average speed 

X total time), 

(4) calculate the time travelled in hours from each of the three time intervals given in 

the table of values by multiplying the average speed in that time frame by the 

time in hours to determine the total distance covered within that time interval,  

(5) repeat this step for the other two time frames and sum all three to determine the 

total distance travelled, and 

(6) divide the answer by the total time taken for the journey.  
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The concurrent processing of the above mathematical procedures, along with the interpretation 

of the table of values and application of conceptual knowledge, involves a high level of 

element interactivity and therefore, a high cognitive load. Figure 5.4d shows a sample of the 

work of a student who used an approach similar to Method 2 to solve the problem. This student 

could be viewed as an expert because he was able to perfectly solve the problem with one 

operational line of high element interactivity. In this sample, 21.6% of the students who got full 

marks solved the problem using this method (i.e., one operational line). This shows that 1 out 

of 5 students were experts in this domain.  

While Method 2 technically has a higher element interactivity compared to Method 1, 

the solution involves fewer operational lines, and is the preferred option of experts (Star & 

Newton, 2009). Experts would be recalling most of the required procedural and conceptual 

knowledge as automated schemas (Kirschner et al., 2006), so the reduction in the number of 

operational lines is actually a reflection of less element interactivity. Getting experts to use 

many operational lines will introduce extraneous cognitive load.  

For the benefit of novices who are learning to solve such complex problems for the first 

time, teachers should probably first introduce Method 1 during instruction. This is because 

novices lack or have unstable links to existing schemas (Ericsson, 2006a) and would not be 

able to handle much element interactivity. After sufficient problem solving practice, students 

would gain more knowledge and develop more stable links to schemas. Teachers may then 

progress to intermediate stages of problem solving. Intermediate stages to bridge the element 

interactivity gap between Method 1 and Methods 2 could be methods that comprise fewer steps 

by combining certain mathematical procedures that are more easily managed. Figure 5.4c 

shows a sample of the work of a student using such an approach. In this sample, 127 out of 204 

students who got full marks (62.2%) solved the problem using various versions of this 
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approach, with operational lines ranging from two to four (Table 5.1). This finding shows that 

the majority of the students in this study were in the intermediate stages of expertise.   

5.5.1.3. Germane cognitive load  

Germane cognitive load occurs when the learner devotes WM resources to deal with the 

intrinsic cognitive load of the learning material, contributing directly to the learner’s 

development of cognitive structures such as schema development and automation that increase 

performance (Sweller et al., 2011).  Sweller (2010) and Beckmann (2010) suggest that germane 

cognitive load should be seen as a result of element interactivity and associated cognitive 

behaviors that contribute to learning. Kadir et al. (2015) elaborated that germane cognitive load 

is imposed on WM when existing relevant schemas are retrieved from LTM to interact with the 

new information in WM (that came from the learning task) to form new higher-level schemas 

(representing the newly-formed knowledge) which are again stored in LTM. This process, 

when repeated, will develop the learners’ expertise in the domain.  

As illustrated in Figure 5.3b, the process of solving the speed problem involves four 

interacting elements: (1) the concept of average speed = total distance/total time, (2) total 

distance and total time for each of the three time intervals: 12pm-2pm, 2pm-3pm, and 3pm-

6pm, which requires the skill to interpret a table of values, (3) matching of variable and value 

in a formula (i.e., symbolic representation of relations), and (4) mathematical procedures 

involving interacting values. After instruction, students should have been exposed to all four 

elements: (1), (2), (3,) and (4). The retrieval of (1) as a schema from LTM (which is probably 

not stable at the initial stages of new learning), to interact with (2), (3), and (4) constitutes 

germane cognitive load because the practice consolidates and automates the mental process 

(see Figure 5.1). Students who have had practice in solving similar problems would know how 

to interpret the table of values to make sense of it, apply the average speed formula, and 

process the multiple interacting elements in the problem to derive the correct solution (i.e., 
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apply scientific concept, recall related formula, and use mathematical skills to solve the 

problem), as illustrated in Figure 5.4. Ideally, these processes would be recalled as automated 

schemas from LTM to interact with the new elements in the problem to facilitate the problem 

solving process, imposing germane cognitive load. Novice or intermediate level students who 

may not have these schemas in their LTM would experience extraneous cognitive load on their 

WM to execute these processes, thus reducing available WM to actually solve the essence of 

the problem. 

The speed problem has been designed to differentiate students who understand the 

concept of average speed and those who do not. Before beginning the mathematical procedural 

processes required in solving the problem, there are a few decisions that students need to make, 

based on their science conceptual knowledge on average speed. The correct decisions and 

methods used to solve the problem will depend on their schema construction and retrieval 

processes formed during prior instruction. Students with a good understanding of the concept 

of average speed would be expected to apply the three different values of average speed and 

time provided in the problem whereas those lacking understanding would not. Conceptual 

mistakes may include: (1) summing up all the average speeds in the table and dividing them by 

3 or 2 depending on the interpretation of whether 0 km/h is to be considered as part of the 

average speed computation, and (2) dividing the total distance by the total time of 5 hours 

(instead of 6 hours) because they did not think that the one hour of rest (i.e., 0 km/h) should be 

considered as part of the average speed computation. For students who made conceptual 

mistakes but used fewer operational lines to solve the problem, instruction for them should 

focus more on developing their conceptual knowledge.  

Students’ conceptual and procedural knowledge depends on the schemas constructed 

during instruction. If instruction is sub-optimal, domain schemas will be poorly constructed, 

schema automation will be adversely affected, and students will struggle to solve problems 
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with high element interactivity. However, if instruction is optimal, students will construct 

conceptually correct domain schemas, which will stabilize with practice over time, making 

schema automation possible during the problem solving process (Sweller et al., 2011). For 

example, significant WM resources are required to manage the high element interactivity in 

simultaneously executing the three operations of multiplication, addition, and division 

involving nine magnitudes within a single operational line in step 1, Method 2: [(75 X 2) + (0 

X 1) + (70 X 3)] / 2+1+3.  Expert students would retrieve and automate their science and 

mathematical knowledge as schemas, thus reducing the element interactivity in the problem. 

This frees WM resources to deal with the new interacting elements in the problem, introducing 

germane cognitive load. If the element interactivity is within the capacity of WM, students’ 

success rate in solving complex science problems is increased (Carlson et al., 2003).  

5.5.2. Analysis in terms of Marks and Operational Lines 

Twelve out of 272 participants did not complete the problem task (i.e., nine students 

left the problem blank and three students filled up the space with a random number). These 

students’ results were not analyzed.  Therefore only 260 students’ answers were analyzed in 

terms of marks and operational lines. Correlation analysis showed that students’ mark had a 

small positive correlation with the number of operational lines they used to solve the problem 

(r = .19, p < .05). It implied that students who used more operational lines tended to get the 

solutions to the problem correct, resulting in higher marks. Since most of the students were at 

the intermediate stage of expertise, at least sorme of them may need to use enough operational 

lines to facilitate their thought processes and guide them to solving the problem accurately. 

However, the low correlation between operational lines and score for the problem, although 

significant, reflects that the number of operational lines may not be commensurate with 

students’ understanding of the concept of speed. An inspection of the data showed that a few 

students who used fewer lines to solve the problem and some others who used more lines both 
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got it wrong, both due to their wrong understanding of the concept. Therefore, in order to 

understand students’ use of operational lines more accurately, I categorized students’ responses 

into three categories: those that were awarded 0 mark, 1 mark, and 2 marks. Table 5.1 shows 

the distribution of students whose responses were awarded 0 mark, 1 mark, and 2 marks and 

the number of operational lines that they used to solve the problem. As shown in Table 5.1, the 

responses of: 31 students (11.9%) were not awarded any mark, 25 students (9.6%) were 

awarded one mark and 204 students (78.5%) were awarded a perfect score of two marks. The 

following section elaborates on the problem solving processes for each category. 

5.5.2.1. Zero-mark solutions  

Thirty-one solutions were given a score of zero, mostly because incorrect concepts were 

applied. For example, average speed is the distance travelled per unit time and computed by 

summing the distance travelled during the whole journey and dividing it by the total time taken 

to complete the journey. Some of the zero-scoring solutions had the summing of the speeds 

(instead of distance) and dividing it by three speeds or total time. Figure 5.4a shows an 

example of such a solution. Most of these students used between one to three operational lines 

to solve the problem (see Table 5.1). A score of zero is often associated with zero 

understanding, but these students’ solutions, when analyzed in terms of element interactivity, 

showed that they were able to manage high element interactivity in terms of mathematical 

procedures. Therefore, for this group of students, instruction should focus on developing their 

understanding of the scientific concepts of ‘average speed’ rather than on mathematical 

procedures for which they already possess relevant schemas. These results showed that an 

analysis of students’ answers using element interactivity would provide useful information 

about their thought processes and areas of expertise. 

5.5.2.2. One-mark solutions  

Twenty-five one-mark solutions demonstrated mistakes such as using the wrong units 
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or making mathematical miscalculations. Figure 5.4b shows an example of such a solution. 

Most of these students have applied the correct concept of ‘average speed’ and used one to six 

operational lines to solve the problem (see Table 5.1). The majority of this group of students 

used three to four operational lines, indicating that they were still developing expertise in this 

domain. Most mistakes were minor and mathematical, and could easily be remedied with 

teacher advice. Instruction for this group of students could be similar to those whose solution 

scored two marks, since they were able to manage about the same level of element 

interactivity.   

5.5.2.3. Two-mark solutions  

The majority of students (i.e., 204 out of 260) produced solutions that scored the 

maximum of two marks. Their solutions were perfect both conceptually and in mathematical 

operations. Figures 5.4c to 5.4e show examples of solutions that were awarded a perfect score. 

For this group of students, most of them used between one and eight operational lines to solve 

the problem (see Table 5.1). There is almost an equal distribution of students who used one to 

four operational lines, with about 20% of students for each case. These results demonstrate that 

there is variation in the way that students articulate their thought processes. Students who used 

more than five operational lines form the minority of the students (i.e., 16%). These results 

showed that the majority of the students were not novices, as they did not need that many 

operational lines to articulate their thought processes. They were able to combine steps and 

handle operational lines with higher element interactivity. However, only 21.6% of the perfect-

score students used one operational line with the highest element interactivity, so I may 

conclude that although most of the students were not novices, they were still in the 

intermediate stage of developing expertise in the domain (i.e., not experts yet). With 

developing domain expertise over time, these would use fewer operational lines because they 

would combine steps and be able to handle operational lines with higher element interactivity.   
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5.6. Conclusion 

The solving of science word problems, especially in the area of physics, involves the 

need to simultaneously process multiple elements such as the application of mathematical and 

scientific rules, executing problem solving procedures, the manipulation of symbols and 

values, as well as applying relevant conceptual and procedural knowledge (Carlson et al., 2003; 

Kadir et al., 2015). This range and variety of elements are often interrelated, making science 

problem solving activity a cognitive task with high element interactivity (Kadir et al., 2015). 

Physics problems are challenging for novices because they lack required schemas (including 

problem-type schemas), which makes it difficult to integrate new information with their 

inadequate existing knowledge (Chi et al., 1982).  

CLT research has tended to use element interactivity as a common explanatory 

mechanism for intrinsic cognitive load. Recent literature suggests that it should be central to 

CLT (Beckmann, 2010; Sweller, 2010), but little is known about how the conceptualization can 

be applied to all types of cognitive load. Researchers have also emphasized the need to reduce 

extraneous cognitive load to have more WM resources devoted to germane cognitive load, but 

the ‘how’ to do this effectively has been hampered due to the absence of a well-articulated 

explanatory mechanism.  

In this study, I used element interactivity to explain all three forms of cognitive load 

experienced by learners when solving complex problems. This approach may also be used to 

focus instructors’ attention on the level of complexity in problem solving materials prior to 

administering them to students, enabling instructors to select appropriate teaching strategies to 

optimize learning opportunities. This is critical because on one hand, materials that are too high 

in complexity are known to not only hinder learning in the short term, but have adverse long- 

term effects in terms of student motivation to engage with science (Kadir et al., 2015; Yeung, 

1999). On the other hand, materials that are too low in complexity will result in the expertise 
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reversal effect (Kalyuga et al., 2003), which could also lower student motivation. Expertise 

reversal effect comes about when instructional methods and materials aimed at novice learners 

become ineffective as learners gain expertise in the domain (Kalyuga, 2007).  

Apart from analyzing word problems, I also showed how element interactivity can be a 

useful construct to evaluate students’ work, from which I can estimate their level of expertise. 

For example, students who used Method 2 (see Figure 5.4d) showed expertise and would be 

exposed to extraneous cognitive load if they were taught using Method 1, which were tailored 

for novices. The additional steps in Method 1 would be redundant and would not contribute to 

the learning of experts in the domain. Teachers therefore need to know their students’ level of 

expertise (novice, intermediate, or expert) and tailor their instructional approaches accordingly, 

so that element interactivity at every stage of the problem solving process is effectively 

managed for all students. Optimal learning opportunities occur only when students receive 

instruction that fits their current knowledge levels and expertise (Sweller et al., 2011). 

Additional research is required to generalize the applicability of using element 

interactivity as a diagnostic tool in other science topics and curriculum domains. However, by 

examining students’ work in a complex learning task through the lens of element interactivity, 

teachers would be able to: 

(1) gain insights about students’ thought processes and estimate their level of  

expertise; and 

(2) evaluate the effectiveness of the instructional designs and materials.  

5.6.1. Practical Implications for Science Education 

In this study, without prompting, high-ability students used more than one operational 

line to solve the problem, showing that they were at an intermediate stage of expertise. 

Students of low ability and lacking schemas in the domain may not even attempt to solve the 

complex problem as the intrinsic cognitive load itself may overload their WM. One way to help 
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students develop expertise in complex problem solving is to provide worked examples 

followed by more opportunities for them to practice problem solving in the domain, in 

sequential stages of increasing element interactivity (Ayres, 2013). Effective instruction, 

learning and practice that match the students’ knowledge levels, may help them develop 

schemas that could become automated (Ericsson, 2005) and increase their expertise in that 

domain. They would then be able to apply more efficient problem solving strategies reflected 

in the use of less operational lines (Star & Newton, 2009). Teachers who use element 

interactivity to provide instruction may therefore optimize learning opportunities for their 

students. The following provides suggestions on how this may be approached.  

5.6.1.1. Isolating interacting elements  

Breaking down complex problems into parts or introducing solution steps with less 

interacting elements lowers the level of element interactivity at each stage of problem solving. 

The problem in Figure 5.3a is an example of a science problem with high element interactivity 

and therefore imposes high intrinsic cognitive load on novice problem solvers, who may not be 

able to process all the interacting elements simultaneously without exceeding their WM 

capacity. Following the advice of Ayres (2013), the problem may be broken down into separate 

units to support learning in a sequential manner, focusing on individual units separately.   

For lower-ability students or those with less pre-existing knowledge, sub-tasks allow 

students to focus on one smaller task at a time. One approach is to work out the solution using 

as many steps as possible, and to then develop each step of the solution to form a sub-task. 

Figure 5.5 illustrates how the same problem on speed can be broken down into five sub-tasks. 

Following the steps, students are guided towards carrying out the necessary solution steps to 

calculate the average speed. This reduces the need for students to search for solution methods, 

which decreases extraneous cognitive load. 
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  Based on the information in the table,   

(a) state the total time taken for the car to complete the entire journey; 

(b) calculate the distance travelled by the car from 12 pm to 2 pm; 

(c) state the period of time when the car is not moving; 

(d) calculate the total distance travelled by the car for the entire journey; 

(e) calculate the average speed of the car for the entire journey (leave your answer in km/h).  

Figure 5.5. An example of how a complex science problem can be broken down into smaller 

sub-tasks. 

 

Students with intermediate knowledge should be introduced to a method where each 

solution step constitutes a low element interactivity task, comprising no more than two 

elements and a mathematical operation. (e.g., Method 1). This will help students to acquire the 

schemas to solve science problems without overloading their WM. The teacher may encourage 

the combination of steps to reduce the operational lines (i.e., intermediate stages leading to 

Method 2) as the students progress in acquiring problem solving schemas. A teacher of 

intermediate students could begin with Method 1 where each line of the six solution steps 

constitutes a low element interactivity task. Each solution step comprises no more than two 

elements and a mathematical operation. Next, the students could progress to a ‘two-solution 

step’ stage. The first step would be: total distance travelled in the journey = (75X2) + (0X1) + 

(70X3) = 360 km and second step: the average speed of the car = 360 km / 6 h = 60 km/h.  In 

terms of element interactivity, the first step of this intermediate stage combines steps 1 to 4 in 

Method 1 and appears to be a high element interactivity task, but lower than the element 

interactivity in Step 1 in Method 2, since it does not deal with the division operation with the 

total time taken for the journey.  

The second (and final step) for the intermediate stage involves three main elements: (1) 

using the value of total distance calculated in Step 1, (2) calculating the total duration of time 
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for the entire travel, and (3) dividing the total distance with the total time taken. Hence, it 

incurs higher element interactivity than any of the operational lines in Method 2, but lower 

element interactivity than operation line 1 in Method 2. When students have practiced solving 

such problems, the teacher can introduce Method 2, which comprises one solution step of high 

element interactivity, owing to the need to manipulate multiple interacting elements 

simultaneously in WM (i.e., multiplication of time and speed for distance travelled during the 

three time intervals, summing up the distances and time taken and carrying out the division 

operation; all within one solution step).  

As students develop problem-based schemas, the combination of multiple solution steps 

into one step would have lower element interactivity because the schemas (conceptual, 

procedural and their interactions) could be retrieved from LTM as single elements, greatly 

reducing the elements that the students have to deal with in WM.   

5.6.1.2. Practice   

Practice in solving similar problems facilitates the retrieval of existing schemas and the 

construction of higher-level schemas after interaction with the new elements in WM, 

eventually leading to the automation of conceptual and procedural schemas (Ericsson, 2005). 

Schema automation reduces extraneous cognitive load on WM, so more of the limited WM 

resources will be available to be devoted to managing the element interactivity in germane 

cognitive load, which is essential for learning (Sweller et al., 2011). With more practice in 

solving similar problems, WM resources devoted to germane cognitive load will facilitate 

schema construction and automation of both conceptual and procedural knowledge, enhancing 

learning. This, in turn, reinforces and increases students’ existing knowledge base by having 

high-level schemas organized in LTM.  Students will then be able to solve problems with 

greater complexity, when these high-level schemas are automated (Ericsson, 2006b).  
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5.6.1.3. Introducing one type of knowledge at a time  

 Problem solving involves element interactivity between procedural and conceptual 

knowledge (Ngu et al., 2015). The challenge with science problem solving tasks is managing 

both types of knowledge concurrently in order to maximize learning, which often overloads the 

WM of novices (Kadir et al., 2015). Teachers should be mindful of the need to consider the 

interactivity of both types of knowledge and attempt to make learning more manageable for the 

students. For example, for students who are able to manage high element interactivity in 

mathematical procedures, instruction should focus on developing conceptual understanding in 

the science domain.  

5.6.1.4. Motivation    

Based on the model of human cognitive architecture (see Figure 5.1), cognitive 

processes only occur when students pay attention and are engaged in the learning task. An 

intelligent student who does not give a learning task any attention will have all his WM 

resources devoted to other events rather than the targeted task. This means that motivation is an 

essential factor for learning tasks to be completed (Ryan & Deci, 2016). Therefore, in addition 

to applying CLT strategies for effective learning, the teaching and learning processes need to 

be motivating enough to engage the learners.  

5.6.2. Recommendations  

Educators should capitalize on recent findings from CLT research to improve the 

effectiveness of teaching and learning in the classroom. The following are recommendations 

for consideration:  

a. estimate the types of cognitive load students may experience during the learning  

process by identifying and analyzing the element interactivity of the science 

instructional materials; 

b. work out the solution of the problem solving tasks using different methods, and  
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then estimate the element interactivity of each method, to decide which method 

is most suitable for which students, based on their existing knowledge base; 

c. devise effective pedagogical strategies (based on the element interactivity 

analysis for the different types of cognitive load) to scaffold complex learning 

tasks to ensure that the level of element interactivity is manageable for the 

students (given their existing knowledge base) for more effective learning;  

d. progress students’ practice in problem solving tasks to generate an appropriate 

level of germane cognitive load to facilitate schema building and retrieval; 

e. introduce relevant work examples (each consisting of a problem and the 

solution steps to solve the problem) for the students to study prior to solving the 

problems in order to reduce the problem search and help students to construct 

problem-based schemas (van Gog & Kester, 2012); and 

f. motivate students to learn so that they will pay attention to the learning tasks at 

hand. 

In sum, element interactivity is an important and useful construct to support the 

generation of more effective instructional procedures. This will further contribute to the 

research goal of CLT linked to progress in education.  
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CHAPTER 6: STUDY 4 -                                                                                                      

Effects of Managing Element Interactivity on                                                                           

Student Achievement and their Academic Self-Concept          

                                                                                          

6.1. Preface 

Study 4 is an extension of Study 3. While Study 3 used element interactivity as a construct for 

the analysis of student learning processes, Study 4 used element interactivity for the analysis and 

design of science instruction. Instruction is critical in generating student thought processes, 

which presumably leads to effective learning. However, if science instruction causes cognitive 

overload, students will not learn effectively. As elaborated in Study 1, self-concept is crucial 

because if students do not believe that they are capable of doing well in science, they may neither 

give their best nor pay attention to the science learning tasks. When attention is not given to 

instruction, no learning will take place. Study 4 contributes to the aim of this thesis by 

investigating the effects of reducing cognitive load at each stage of learning on student 

achievement and academic self-concept (motivational) in science. The findings will (1) show 

how learning tasks can be analyzed in terms of element interactivity to assess their suitability for 

students, (2) highlight the effects of a cognitive strategy of managing element interactivity on 

student achievement and self-concept, and (3) guide lesson design and instruction to ensure 

instruction suits students’ cognitive levels and not cause cognitive overload.   
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6.2. Abstract 

Element interactivity, an essential feature underpinning cognitive load theory, has been 

identified as a major construct for explaining complexity in learning materials, but is not 

commonly used by teachers. The main aim of this study was to illustrate how teachers can 

manage the element interactivity involved in learning a complex science topic such as density, 

and to present some preliminary intervention effects following an in-service workshop that 

enabled teachers to apply an instructional strategy to manage element interactivity. Results 

showed that Grade 7 students (N=156) benefitted from instruction that reduced element 

interactivity, not only in terms of their achievement, but also in their self-concept. Evidence 

shows that teachers who understand and are able to use element interactivity to manage 

instruction will be more effective in designing instruction that benefits their students, thus 

progressing teacher education to a new level.  
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6.3. Introduction 

Presenting students with learning materials that are compatible with their capabilities is 

in line with Vygotsky’s (1963) zone of proximal development and optimized learning. 

Learning materials that are too easy may under-challenge students’ cognitive capacities, while 

materials that are too difficult may risk reducing students’ self-concept, both of which have 

negative effects towards students’ learning and motivation (Schnotz & Kürschner, 2007, 

Taconis, 2013). Knowledge of element interactivity enables teachers to design learning and 

assessment materials as well as instructional approaches that are compatible with their 

students’ level of expertise. When teachers simplify complex problems into their elements and 

interactions, essential concepts and procedures are clarified resulting in students being more 

likely to solve word problems successfully. When students experience success in learning, their 

self-concept increases, as does their achievement and motivation, which optimizes their 

learning potential (Phan, Ngu, & Yeung, 2016). The main aim of this study was to demonstrate 

how teachers can manage the element interactivity involved in learning a complex science 

topic such as density, and to present some preliminary intervention effects of an in-service 

workshop that enabled teachers to apply an instructional strategy that managed element 

interactivity on students’ achievement and self-concept in physics. 

Element interactivity is a construct used by cognitive load theory (CLT) that addresses 

complexity in learning tasks (Sweller, 1994, 2006, 2010; van Merriënboer & Sweller, 2005).  

Sweller (2010) defines an element as “anything that needs to be or has been learned, such as a 

concept or a procedure” (p. 124). He elaborated that if an element can be learned in isolation, 

with minimal reference to other elements, there is low element interactivity in the learning 

material. In contrast, if the new material consists of elements that heavily interact and cannot 

be learned in isolation, then that material is considered to have high element interactivity 

(Sweller, 2010). There are significant learning benefits for students when teachers’ 
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instructional approaches reduce element interactivity for example, by analyzing resources and 

tasks for: intrinsic cognitive load (e.g., complexity of learning materials), extraneous cognitive 

load (e.g., sub-optimal instruction), and germane cognitive load (e.g., investing mental effort 

for consolidation and transfer).  

Recent literature on CLT indicates that element interactivity is a useful construct 

underpinning the understanding of how complex learning tasks are approached by learners 

(e.g., Ayres, 2013; Sweller, 2010). However, the use of element interactivity to design science 

instruction and complex word problems to accommodate the needs of students has not been 

explored. Another area of CLT that is under-researched is the effects of instruction that reduced 

element interactivity on students’ achievement and self-concept.  Recently, researchers have 

emphasized targeting educational interventions to include both cognitive (e.g., achievement) 

and motivational outcomes (e.g., self-concept) for long-term effects on students’ development 

(e.g., Guo, Parker, Marsh, & Morin, 2015; Shen & Pedulla, 2000). An effective intervention 

should promote both achievement scores and self-concept in the specific domain. This study 

was designed to investigate these under-researched areas using CLT as the theoretical 

framework. In the following, I will show how instruction in high element interactivity topics 

can be effectively managed by isolating elements.  Within the context of density I focused on 

the analysis of word problems using element interactivity to measure their complexity. In the 

study, I attempted to demonstrate that by defining and analyzing the three types of cognitive 

load (i.e., intrinsic, extraneous, and germane) in terms of element interactivity, it is possible to 

analyze most learning materials, resulting in tailored instruction and learning tasks to suit 

students’ knowledge levels. To assess the effectiveness of this strategy, I tested a sample of 

Grade 7 students in a small-scale experimental study to assess any gains in achievement and 

self-concept scores.  
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6.3.1. Cognitive Load Theory and Element Interactivity 

Cognitive load theory (Sweller, 1988; Sweller et al., 2011; Sweller, van Merriënboer, & 

Paas, 1998) was developed by researchers to address cognitive issues in the information 

processing model of human cognition and was then used to develop instructional models to 

improve learning (Sweller et al., 2011). Effective learning occurs when there is less cognitive 

load associated with mental processing of instructional materials (Yeung, 1999), which results 

in schema construction and automation. Schemas are knowledge structures held in the long-

term memory (LTM). Schemas can be retrieved from the LTM (Valcke, 2002) to interact with 

new elements in the WM and be processed to make sense of incoming information to develop 

new knowledge, generating higher-level schemas (Newell & Simon, 1972), which are then 

retained in the LTM.  

CLT is particularly effective when applied to the learning of complex materials, when 

learners are often overwhelmed by the interactions of multiple elements that need to be 

processed simultaneously before meaningful learning can begin (Sweller et al., 2011). For 

students engaged in science learning and problem solving, there are many interactive elements 

including: the application of mathematical and scientific rules, following procedures, the 

manipulation of symbols and values, and applying relevant conceptual and procedural 

knowledge – all of which incur a high cognitive load within the limited working memory 

(WM) of the brain. The high levels of element interactivity in science problem solving tasks 

are particularly challenging for novice learners who have low pre-existing knowledge in the 

science domain (van Merriënboer & Sweller, 2005). It is important to note that the level of 

complexity of problem solving tasks is primarily determined by the degree of interactivity of 

the elements, not just the number of elements involved in the mental process (Leahy & 

Sweller, 2005; Pollock, Chandler, & Sweller, 2002). The extent to which the various elements 

interact in a science problem solving task is related to the cognitive load imposed on students 
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WM (Kadir, Ngu, & Yeung, 2015), so science problem solving tasks that involve high element 

interactivity have an increased chance of overloading students’ limited WM. When students’ 

WM is overloaded, learning is hindered (Sweller, 1988). Element interactivity is the major 

source of WM load for all three types of cognitive load which students experience when 

engaging in a learning task (Sweller, 2010). The three types of cognitive load identified by 

CLT are intrinsic, extraneous, and germane (Sweller et al., 2011). CLT contends that learning 

is best facilitated by: adjusting intrinsic load to match the learner’s existing knowledge level; 

reducing extraneous cognitive load to free up WM resources; and optimizing germane 

cognitive load so that available WM resources can be devoted to cognitive strategies that 

facilitate schema construction and automation. The following describe each type of cognitive 

load in terms of element interactivity.  

6.3.1.1. Intrinsic cognitive load  

Intrinsic cognitive load is imposed by the structure of the learning material (Sweller et 

al., 2011). The level of interactivity among essential elements of information (Sweller, 2010, p. 

124) determines the intellectual complexity of the presented material (Sweller & Chandler, 

1994). For example, memorizing the individual symbols in the formula to calculate the velocity 

of a car (v = s ÷ t) in isolation by rote involves limited understanding, and incurs low element 

interactivity. The symbols ‘v’ (velocity), ‘s’ (displacement), and ‘t’ (time) can be 

independently learned. In contrast, coming to an understanding of the relationship between the 

elements is a higher element interactivity task.  Here in the topic of velocity, the learner is 

required to process simultaneously the relations between four elements (v, =, s, ÷, t) in order to 

understand velocity (v) as the displacement made by the car in one unit of time. The degree of 

element interactivity, and therefore the level of complexity, increases when the unit of each 

quantity of velocity, displacement, and time are considered in the calculations (e.g., m/s, m and 

s or km/h, km and h, respectively). Essentially, intrinsic cognitive load can be estimated by 
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examining the number of elements and the interactions among them in presented learning 

materials (Sweller & Chandler, 1994; Tindall-Ford, Chandler, & Sweller, 1997).  

6.3.1.2. Extraneous cognitive load  

Sub-optimal instructional procedures related to lesson delivery and instruction (i.e., 

pedagogy) may also impose cognitive load on WM impeding learning (Sweller, 2010), and are 

known as extraneous cognitive load. Science can be taught using various methods, some of 

which may generate extraneous cognitive load, depending on how the information is presented 

(Leahy, Hanham, & Sweller, 2015). For example, if a teacher uses a diagram that does not 

clearly explain the concept of velocity, students would experience extraneous cognitive load if 

they are confused by the diagram or decipher the diagram unsuccessfully, resulting in no or 

erroneous learning. The use of diagrams that clearly explain the concept of velocity would 

reduce extraneous cognitive load.  Many researchers have found that student learning improved 

when extraneous cognitive load was reduced (e.g., Liu, Lin, Tsai, & Paas, 2012; Paas, Camp, 

& Rikers, 2001; Yeung, 1999). A goal of instruction should be to eliminate or reduce 

extraneous cognitive load (Beckmann, 2010).  

When students experience sub-optimal instruction, they engage in cognitive activities 

that are not involved with schema acquisition (Sweller, 1994). For problem solving tasks, such 

activities include ‘means-ends analysis’ (Newell & Simon, 1972; Sweller, 1988), ‘problem 

solving search’ (Simon & Kadane, 1975), and ‘guessing’ or applying knowledge activated by 

superficial characteristics of the problem triggering the use of ill-developed, faulty schemas 

(Taconis, 1995). These activities distract learners’ attention (Sweller et al., 2011), contributing 

negatively to schema acquisition. Reducing element interactivity frees up WM resources to 

manage the complexity of the learning material for schema development and acquisition which 

enhance learning.  
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6.3.1.3. Germane cognitive load  

Germane cognitive load is imposed on WM when the learner uses WM resources that 

contribute directly to schema development and automation (Sweller et al., 2011), resulting in 

meaningful learning (van Gog, Paas, & van Merriënboer, 2006) and knowledge acquisition 

(Sweller, 2010).  An instructional goal should therefore be to ensure that sufficient WM 

resources are available to manage germane cognitive load (Sweller et al., 2011). Germane 

cognitive load is an important facet of CLT, but is the least explored and explained in terms of 

element interactivity. 

According to Sweller (2010), germane cognitive load is “purely a function of the 

working memory resources devoted to the interacting elements that determine intrinsic 

cognitive load” and by “assuming constant levels of motivation, the learner has no control over 

germane cognitive load” (p. 126). Beckmann (2010) states that germane cognitive load should 

be seen as a result of element interactivity and associated cognitive behaviors because schema 

formation occur through retrieval of existing schemas from LTM combined with encoding of 

new information through interacting elements from WM and LTM. For example, if students 

are asked to find the ‘velocity of a truck’ (after prior optimal instruction), they would be able to 

recall the formula of velocity (v = s ÷ t) as a single element (i.e., schema) from LTM. Element 

interactivity that constitutes germane cognitive load involves retrieving the formula as a single 

schema to interact with the values of displacement (s) and time (t) given in the word problem. 

The schema is combined with conceptual and procedural knowledge elements in the problem, 

and the units of each variable.   

Additionally, the level of cognitive load experienced by learners varies, depending on 

their current knowledge level (Kalyuga, Ayres, Chandler, & Sweller, 2003; Sweller, 2010) 

which is dependent on the presence of schemas related to the domain. For example, a science 

teacher with high levels of existing schema, would retrieve the concept deriving from the 
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formula for velocity (velocity is displacement per unit time) as one element (recalled as a 

schema), while the same velocity formula may constitute several interacting elements for a 

novice secondary school student whose understanding of velocity as a single schema does not 

yet exist. In this case, the element interactivity would be higher for the student than for the 

teacher. Given sufficient WM resources and motivation, students who effectively manage this 

high germane load will form schemas which could be automated given sufficient practice. 

While the cognitive load differs for each individual based on their existing knowledge, the 

level of element interactivity is the same for the word problem. Therefore, estimating the 

cognitive load of word problems by analyzing the elements and their interactivity is a good 

starting point for teachers to assess their suitability for the students.  

6.3.2. Conceptual and Procedural Knowledge in Science 

Both conceptual and procedural knowledge need to be simultaneously processed in 

WM in order to learn science effectively and for knowledge to be applied when solving science 

problems. Conceptual knowledge is ‘knowing that’ and procedural knowledge is ‘knowing 

how’ (Ryle, 1976). In this study, conceptual knowledge is defined as ‘understanding the 

meaning’ behind the learning task and procedural knowledge is defined as the ‘ability to carry 

out the steps and processes’ to solve the problem, also referred to as problem solving skills. 

Learners’ success in using appropriate cognitive strategies in science, mathematics and 

geography depends on the knowledge and understanding of the domain in which the problems 

are based on (Taconis, 2013). For example, solving a quantitative problem on Density, such as 

the one in Figure 6.1, requires an understanding of the concept of density before knowledge 

and strategies can be applied to solve the problem. Mathematical skills are also required to 

quantify the solution. Therefore, both conceptual and procedural knowledge have to be 

simultaneously applied to ensure success when solving this type of problem. The simultaneous 

processing of conceptual and procedural knowledge has a high level of element interactivity, 
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which imposes a high cognitive load on WM, creating issues in cognitive processing. Figure 

6.1 shows the multi-part density question designed by the teachers and Figure 6.2 shows how it 

was analyzed in terms of element interactivity. 

In this study, element interactivity in the topic of Density was reduced by the isolated-

elements strategy (Kester, Kirshner, & van Merriënboer, 2006; Pollock et al., 2002). Since the 

students in the study possessed good mathematical skills, including algebraic manipulations, 

the teachers focused on introducing the conceptual knowledge of density, before introducing 

the related procedural knowledge (e.g., applying mathematical procedures to solve density 

problems quantitatively). Within each type of knowledge, teachers designed their lessons using 

sequential stages of increasing element interactivity. Simple concepts (e.g., mass) were 

introduced before difficult concepts (e.g., density) and simple procedures (e.g., using the 

density formula as it is: density = mass ÷ volume) were introduced before difficult procedures 

(e.g., algebraic manipulations of the density formula: mass = density x volume).  

 

 
Figure 6.1. A science problem on density designed by teachers and given to student. 

 

 

 

 

 

In a Physics laboratory, a beaker of sugar solution is placed on the teacher’s bench. The 

density of 500 ml of sugar solution is found to be 1.25 g/cm3.  

 

(a) What is the density of 5.0 ml of the same sugar solution? 

(b) A student pours 125 g of sugar solution into a measuring cylinder. What is the 

volume of the sugar solution in the measuring cylinder? 

(c) Another student pours 2.0 cm3 of sugar solution into a small measuring cylinder. 

What is the mass of that sugar solution?  

 

(d) A cube of 1.0 cm3 has a mass of 1.1 g. Will it float or sink in the sugar solution? 

Explain your answer 
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Figure 6.2. Solution to the science problem on density and its element interactivity. 

 

 

To effectively solve all parts to this problem, students need to simultaneously manage the 

following interacting elements: 

(1) Understand and apply the concept of density 

- Density is the characteristic of a substance’s material / composition (i.e. two items 

made of the same material have the same density regardless of their size) 

- Density is the mass of the substance in one unit of its volume 

- Relative density between substances and the surrounding liquid causes floating and 

sinking 

(2) Apply the density formula and perform algebraic manipulation to make volume/mass 

the subject: Density of solution = mass of solution / volume of solution 

Solution Element interactivity 

(a) 

 

1.25 g/cm3 Evaluating all the information given in the problem, the student 

needs to apply the concept that the density of a substance is 

independent of its size/amount. i.e., volume of 500ml of the 

sugar solution is the same as 5ml of sugar solution. As the 

volume decreases the mass decreases proportionately, so 

density is the same. No calculation is necessary. 

(b) Density = mass/volume 

Volume   

= mass / density 

= 125 g /1.25 g/cm3 

= 100 cm3 

Since the question asks for volume, students need to perform an 

algebraic manipulation of the formula: density = mass / volume, 

to make volume the subject. The search for values for 

substitution involves identifying mass from the unit of ‘g’ since 

the problem itself does not state 125 g as the mass of the 

solution. The value of density can be retrieved from the main 

problem statement, provided students recognize that the sugar 

solution, whether 500 ml or 125 g, has the same density.  

(c) mass 

= density x volume 

= 1.25 g/cm3 x 2.0 cm3 

= 2.5 g 

Again algebraic manipulation is necessary for those choosing to 

apply the density formula to solve for mass. For those students 

who understand the concept of the density formula, less 

cognitive load will be allocated to solve the problem i.e., they 

simply multiply the density by volume based on their 

understanding of density as mass per unit volume.  

(d) It will float. 

The density of the cube 

is less than the density 

of the sugar solution.  

 

To answer this question, students need to compare density 

values (between cube and solution) and understand that it is 

relative density that causes floating and sinking, which means 

that if the object has a density less than the density of the liquid 

then it floats in the liquid and vice versa. Those who prefer to 

do calculations can calculate the density of the cube by 

applying the density formula. But given that the values are 

simple, students can do a mental calculation of the density of 

the cube (1.1 g/cm3) and answer that it should float on water 

because the its density is less than the density of the solution 

(1.25 g/cm3).  
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6.3.3. Isolating-elements Strategy 

Learning tasks that have high element interactivity are known to easily overload the 

working memory.  Several researchers have tried to directly remove interacting elements from 

initial learning tasks in order to reduce the element interactivity, an approach known as the 

isolated-elements strategy. Pollock et al. (2002) were the first to try this strategy in their study 

on trade apprentices’ learning of electrical safety tests. In phase 1, the researchers isolated the 

elements by focusing instruction only on basic procedural steps. In contrast, another group of 

participants received the same instruction but with full element interactivity where they were 

presented with other explanatory information for further understanding of all parts of the tasks. 

In phase 2, both groups of participants received the same instructional materials with full 

interacting elements. In the post-test, the isolated-elements group performed better than the full 

element interactivity group.  

In another experiment, Pollock et al. (2002) isolated the elements by getting the initial 

instruction to focus on conceptual knowledge instead of procedural steps. Again, the isolated-

elements group performed better than the full element interactivity group. Based on these 

consistent results, they concluded that initial instruction that reduces element interactivity (i.e., 

isolated-elements group) benefits learners more than when initial instruction contains all (i.e., 

full) element interactivity of the learning task. Other researchers who studied the effects of 

isolated-elements strategy included Kester et al. (2006). In their study, learners who 

experienced the isolated-element strategy in the form of sequenced information (i.e., 

procedural followed by declarative or declarative followed by procedural) performed better 

than those who experienced the full element interactivity of the task (i.e., both the declarative 

and procedural information together). In sum, the results of the experiments on the isolated-

elements strategy indicated that it does not matter whether conceptual or procedural knowledge 

is presented to learners first. Learners benefit equally, as long as element interactivity is 
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reduced by presenting one type of knowledge before the other (i.e., in contrast to presenting 

both types of knowledge together).  

In the experimental study reported below, teachers used the isolated-element strategy 

by presenting students with conceptual knowledge on density (e.g., the concept of density as 

the mass in one unit of volume by pictorial representation), followed by procedural knowledge 

(e.g., relating the pictorial representation to density calculations after their conceptual 

understanding was established). During instruction on problem solving, the scientific concepts 

of the word problems were discussed before the procedures of problem solving were explained. 

Each learning task followed a simple-to-complex sequence (Ayres, 2013; Sweller et al., 2011), 

where sub-tasks of higher element interactivity were introduced after students had 

accomplished sub-tasks of lower element interactivity.  

6.3.4. Expected outcomes   

By managing element interactivity, I expect benefits in terms of achievement scores (a 

cognitive outcome) and self-concept (a motivational outcome). Science self-concept can be 

defined as students’ academic self-perceptions in the science domain (Kadir, Yeung, & Barker, 

2012). Students with a positive science self-concept feel good about their academic ability in 

science and are likely to achieve well in the science domain (Kadir et al., 2015). Due to the 

potentially long-term effects that self-concept enhancement may bring to a child’s 

development, researchers have argued for the inclusion of appropriate self-concept 

enhancement elements in educational interventions (e.g., Guo, Parker et al., 2015). In this 

study, I hypothesized that if element interactivity was effectively managed, students would be 

more likely to experience success in their learning, manifested in improved science 

achievement and enhanced science self-concept.  
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6.3.5. The Study 

I studied the effects of managing element interactivity on students’ achievement and 

self-concept. Students completed a pre-test on Density to measure their existing knowledge of 

the topic. Following a training program, teachers delivered instruction to students on Density 

using the isolated-elements strategy to reduce element interactivity in the learning process. 

After the completion of the lessons, students’ learning of the topic was assessed by a post-test. 

As an added measure, students’ pre-test and post-test results of another science topic Properties 

of Matter taught in the teachers’ usual delivery mode (i.e., where element interactivity was not 

managed) before the workshop, were also collected. I hypothesized that students’ gain in 

scores (i.e., difference between post-test and pre-test scores) as well as their post-test scores in 

the Density topic would be higher than that in Properties of Matter, since effective 

management of element interactivity should help students learn more effectively. As for the 

self-concept measure, since I was not able to collect students’ science self-concept scores 

before the Properties of Matter topic was taught, I could only compare the gain in self-concept 

scores in Density. Based on past self-concept research showing the decline in adolescents’ 

academic self-concept, especially during the transition periods of years 7 to 9 (Marsh, 1989; 

Yeung, 2011), it is unlikely to observe a significant gain in students’ self-concept attributable 

to instruction, so I hypothesize that students’ science self-concept will be maintained after 

Density instruction at best. 

6.4. Method 

6.4.1. Participants 

 The participants in this study were four Grade 7 science teachers (2 males and 2 

females; age M = 35.0 years) and 156 Grade 7 students (83 boys and 73 girls; age M = 13.1 

years) from a selective school in Singapore in a high socio-economic area. English is the 

medium of instruction in all Singapore schools, so the participants were fluent in the English 
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language. All science teachers had engineering degrees and had completed a year of teacher 

training (specializing in science and mathematics curriculum) at the National Institute of 

Education in Singapore prior to their teaching career. They had at least seven years of science 

teaching experience and ranged from 30 to 39 years of age. The Grade 7 students were from 

four different classes taught by these teachers.  

6.4.2. Materials and Procedure 

The experiment consisted of four phases: 1) pre-intervention phase, 2) teacher 

knowledge acquisition phase, 3) students’ knowledge and skills acquisition phase and 4) post-

intervention phase. Each phase was conducted within the school premises during the first 

school semester in the first half of the year.  

6.4.2.1. Phase 1: Pre-intervention phase 

Before the intervention, teachers taught science in their usual way, typical of the 

traditional lecture-based system. For every lesson, the teachers showed PowerPoint slides and 

the students who were seated passively in the classroom, copying relevant information in their 

worksheets and notebooks. One of the science curriculum topics taught in this way was 

Properties of Matter. The pre-test and post-test results on Properties of Matter were submitted 

to the researchers as part of the analysis. During this time, students also completed a pre-test on 

Density before the intervention. The Density pre-test was designed by me, based on the 

curriculum objectives of the topic determined by the school, after which it was given to the 

science teachers in the school for review and moderation.  The pre-test was less complex than 

the post-test because the students were not asked to perform any topic-related calculations. The 

Density pre-test questions mainly assessed students’ understanding of floating and sinking, and 

ideas on relative density, given certain scenarios. The pre-test was marked by the teachers and 

submitted to the researchers for inter-rater reliability. It was also during this phase that students 

completed a self-concept pre-test, to measure their science self-concept before the intervention.  
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6.4.2.2. Phase 2: Teacher knowledge acquisition phase 

Participating science teachers attended five one-hour workshops conducted by the 

researchers after school curriculum hours. During the first two workshops, teachers were 

introduced to information about students’ cognitive processes during learning and how to use 

element interactivity as an approach to: (1) analyze science word problems, (2) design 

instruction to meet students’ learning needs and (3) design word problems that matched 

students’ ability levels. In workshops three and four, the teachers worked with the researchers 

to design Density lessons using the isolated-elements strategy (Pollock et al., 2002) to reduce 

element interactivity and to assist novice learners with learning complex materials (e.g., Ayres, 

2013; Kester et al., 2006). In the final workshop, teachers worked with the researchers to 

design a complex multi-part density problem and analyzed it using element interactivity.   

6.4.2.3. Phase 3: Students’ knowledge acquisition phase  

The acquisition phase for the students was based on the Density lessons designed by 

their science teachers. All four science teachers delivered their lessons using the same Density 

lesson plans that were finalized at the end of the fifth workshop. Over seven one-hour lessons 

in three weeks, students were taught (1) the concept of mass, volume and density, (2) that 

density is a ratio of mass to volume and thus a property of a material, (3) the density formula 

(i.e., density = mass / volume) and how to apply it to solve problems in mass, volume and 

density and, (4) the concept of relative density and how it relates to floating and sinking. Some 

of the lessons were in the form of hands-on activities and some were theory-based instruction 

in the classroom.  

6.4.2.4. Phase 4: Post-intervention phase  

During this phase, students completed a Density post-test designed by the teachers and 

researchers, as well as a survey measuring their science self-concept after the intervention. The 

Density post-test questions covered the targeted concepts and procedures in the curriculum 
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which were: (1) density is a ratio of mass to volume and thus a property of a material, (2) 

applying the density formula (i.e., density = mass ÷ volume) to solve problems in mass, 

volume and density and (3) applying the concept of relative density to determine whether an 

object floats or sinks in a liquid.  

6.4.2.5. Test scores 

The pre-tests and post-tests of the two science topics, Density and Properties of Matter, 

were assigned 5 marks each, one mark per question. Any error in a question resulted in zero 

mark assigned to the student for that question. All test questions were marked and awarded 

scores by the teachers. The researchers were then given the same students’ work to score and 

had an inter-rater agreement of 100%. Students’ achievement was determined from these test 

scores. Comparisons were made between the pre-test and post-test scores for each topic to 

study students’ achievement gain before and after the topics were taught. If students’ improved 

more significantly from pre-test to post-test in the topic of Density (where element interactivity 

management was present), than in the topic of Properties of Matter (where element interactivity 

management was absent), then it could be an indication that managing element interactivity 

during students’ learning process had a role in the students’ higher achievement.  

6.4.2.6. Science self-concept 

Each student was given a survey in which they rated on a scale of 1 (strongly disagree) 

- 6 (strongly agree) how much they agreed with each of four statements describing their sense 

of competence in science (e.g., “I have always done well in science”). The statements were 

taken from the self-concept scale in Kadir et al. (2012) who adapted the items from the Marsh 

(1992) Academic Self-Description Questionnaire (ASDQ) instrument. The survey was 

administered to the students before and after the intervention.  

All research procedures were approved by the university ethics committee and the 

school. Informed consent was obtained from the parents of the students and assent was 
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obtained from the students before data collection. All data were collected by teachers during 

school curriculum hours.  

6.4.3. Statistical Analysis 

A paired-samples t-test was conducted to compare students’ scores on the pre-test and 

post-test on the science topics of Density and Properties of Matter. This was also done for 

students’ science self-concept, before and after the topic Density was taught. The purpose of 

the test was to find out if the post-test scores were significantly higher than the pre-test scores 

for each measure. Cohen’s d (Cohen, 1977) was used as a measure of effect size for the t-test. 

According to Cohen (1977), d = 0.2, 0.5, and 0.8 could be interpreted as small, medium, and 

large effects, respectively.  

6.5. Results  

The results of the study are presented in two parts. Part 1 shows the teachers’ analysis 

of the multi-part density word problem (Figure 6.1) in terms of element interactivity. Part 2 

shows the results of the effects of the intervention on students’ achievement and self-concept.   

6.5.1. Part 1: Teachers’ use of element interactivity to analyze a science word problem 

Figure 6.1 shows the multi-part density question designed by the teachers and Figure 

6.2 shows how it was analyzed in terms of element interactivity. The following shows how the 

element interactivity of each part of the density question was further categorized into intrinsic, 

extraneous and germane cognitive load. Analytic assumptions include: (1) students had a good 

command of the language used in the problem and therefore understand the problem statement 

(i.e., the general message is considered as one element), (2) students were novices as this was 

their first encounter with this science problem (i.e., students do not have schemas directly 

related to the solution the problem) but do possess density-related conceptual and procedural 

schemas due to prior instruction on density problem solving, (3) students possessed basic 

mathematical skills and had prior experience in carrying out basic mathematical procedures 
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(i.e., an operation such as multiplication, addition, or division was considered as one element 

only), and (4) students have similar psychosocial factors related to motivation and anxiety 

(e.g., students are motivated enough to devote attention to the problem and are not anxious, so 

their WM is devoted to the problem solving task instead of dealing with anxiety).  

6.5.1.1. Intrinsic cognitive load of the density problem  

Science word problems typically consist of words, numbers and units that exist in the 

information of the problem text. These three elements interact as they need to be 

simultaneously processed in the learner’s WM for the problem’s context to be understood and 

for the students to identify ways to solve the problem, based on their existing domain-specific 

schemas of conceptual and procedural knowledge in science and mathematics. For a given 

knowledge level, element interactivity of the three element groups stated above is solely 

determined by the characteristics of the problem, so it constitutes intrinsic cognitive load.   

The density problem (see Figure 6.1) is likely to impose a high intrinsic cognitive load on 

learners because it comprises seven elements: two different volumes with the unit ‘ml’, two 

different volumes with the unit ‘cm3’, one density quantity with the unit ‘g/cm3’ and two 

different masses with the unit ‘g’ all of which simultaneously interact with the words in the 

problem. The simultaneous interaction of these elements, together with the conceptual and 

procedural processes of mathematics and science interacting with each other will likely impose 

a substantial intrinsic cognitive load. The conceptual process involves knowledge of the 

relationship between density, mass, volume, floating and sinking. The procedural process 

involves the manipulation of the algebraic equation of ‘density = mass ÷ volume’, where the 

solution may be density, mass, or volume, depending on the stated problem. These elements 

interact in the sense that if any one element is omitted, the problem cannot be solved 

successfully. The high level of interactivity of these elements could overload WM, hindering a 

successful solution.  
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To reduce WM overload, following instructional workshops, participating teachers 

broke the problem down into four parts or sub-tasks (Figure 6.1). This reduced the overall 

intrinsic cognitive load for students by isolating the cognitive processes required to solve each 

part of the problem in sequence (Ayres, 2013). The solution for each part still involves some 

element interactivity between the words and elements within that part, and linking the 

information to the main problem statement, but if I assume that students’ existing schemas of 

the understanding of the language, numbers, units and the concept of density are robust, the 

lower level of element interactivity of each part of the problem will be within the capacity of 

their WM.  

6.5.1.2. Extraneous cognitive load of the density problem  

Secondary school students who lack conceptual knowledge and problem solving skills 

may use ineffective strategies when solving problems such as that in Figure 6.1, including 

guessing and using the means-ends analysis (Newell & Simon, 1972; Sweller, 1988). This 

latter strategy involves decision making processes where students search their existing schemas 

to select appropriate mathematical operational moves to complete each step of the problem 

solving process. According to Beckmann (2010), “mental activities that do not directly 

contribute to schema acquisition and automation (which is the general goal of learning from a 

CLT perspective) are considered to result in extraneous cognitive load” (p. 251). Therefore, 

these searching techniques constitute extraneous cognitive load since the processes are not 

intrinsic to the problem itself - they are processes adopted by the novice in an attempt to solve 

the problem, which interact with each other, and exert a substantial extraneous cognitive load 

on WM, inhibiting learning.  

Students who have experienced sub-optimal instruction are likely to have limited 

conceptual understanding of density. If students memorize the density formula without 

understanding the underpinning science the problem solving search processes would likely be 
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compromised, exerting additional extraneous cognitive load on the WM. With several values of 

mass and volume to consider in the problem, those students lacking conceptual knowledge 

would likely not know which to use or apply correctly. Additionally, memorization of the 

formula alone, may lead to incorrect information recall, compromising retrieval of the correct 

formula (e.g., is it volume ÷ mass or mass x volume or mass ÷ volume?) to effectively solve 

the problem. The element interactivity of the decision-making processes related to formula 

selection and the search for the correct processes to solve the problem exert a significant 

amount of extraneous cognitive load on the WM. Nevertheless, this extraneous cognitive load 

can be reduced if students receive better instruction and more practice sessions which increase 

their LTM related to problem-type schemas.  

Optimal instruction supports the construction and organization of schemas in LTM. 

Practice sessions in solving similar problems involve the repeated recall of the schemas to 

interact with the new elements in WM, which eventually lead to the automation of schemas and 

problem solving processes, reducing the extraneous cognitive load to a manageable level 

(Yeung, 1999).   

6.5.1.3. Germane cognitive load of the density problem 

The process of solving the density problem (Figure 6.2) involves several interacting 

elements: (1a) the formula (density = mass ÷ volume) indicates a relation that density is the 

amount of mass in g that exists in one unit of volume in cm3, so the density is expressed in g 

per cm3, (1b) based on the formula of density as the mass in one unit of volume, density is a 

characteristic of the material, (2) density, mass and volume are each associated with a value 

and respective units, (3) matching of variables and values in a formula (i.e., symbolic 

representation of relations), (4) mathematical procedures involving interacting elements such 

as values and variables and, (5) the concept of relative density (i.e.,  an object will float in a 

liquid of higher density and sink in a liquid of lower density). After analyzing the problem 
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(intrinsic cognitive load), students who have constructed relevant schemas during prior 

instruction on density would be able to retrieve these schemas (although they are probably not 

stable in the initial stages of new learning) from LTM to interact with (1) to (5) above to solve 

the different parts of the problem. The element interactivity involved in this process constitutes 

germane cognitive load as it consolidates and automates the mental processes, facilitating the 

construction and automation of higher-level schemas to solve this and future problems that are 

of similar nature. The following sections describe in detail, the element interactivity 

constituting germane cognitive load that occurs in the WM as students solve each part of the 

multi-part density question (i.e., parts (a) to (d) in Figure 6.1).  

6.5.1.3.1. Solving part (a) of the density problem 

In order to solve this part of the problem, students need to retrieve the schema, “density 

is the mass in one unit of volume”, to interact with the elements of information in the problem. 

This element interactivity constitutes germane cognitive load which will eventually lead to the 

construction of the schema that the density of 5.0 ml of the sugar solution is the same as the 

density of 500 ml of the same sugar solution (because the amount of mass in 1 unit of volume 

(1 cm3 or 1 ml) in both the 5.0 ml and 500 ml of the sugar solution is the same). Following 

practice in solving similar problems, this schema would stabilize. Using germane resources to 

manage element interactivity between existing schemas and new elements in the practice 

problems may result in the construction of a higher-level schema. An example of such a 

schema (conceptual) is ‘density is the characteristic of a material’ (i.e., any two objects made 

of the same material will have the same density regardless of the quantity). Another schema 

(procedural) that could be formed is ‘when the volume of the object decreases, the mass of the 

object decreases proportionally, so density remains the same’, reinforcing the conceptual 

schema of density as an inherent characteristic of a material. Students with relevant schemas 

will be able to solve part (a) of the problem without any calculation, and additional problem 
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solving practice will further enhance their conceptual and procedural knowledge. Although the 

final answer to part (a) is relatively simple, the overall process involves several cognitive 

processes with element interactivity between existing schemas and information within the 

problem. Novices with limited schemas related to the relevant density concepts will experience 

more cognitive load if they also have to use the values given in the problem to come to an 

answer.  

6.5.1.3.2. Solving part (b) of the density problem  

In order to calculate the volume of the sugar solution, students need to complete an 

algebraic manipulation of the density formula to make volume the subject (i.e., volume = mass 

÷ density), which requires the retrieval of an appropriate mathematical schema from their 

LTM. Before substituting the values into the formula, students need to identify ‘125 g’ as the 

mass of the sugar solution, by recalling the schema (conceptual) that ‘g’ is the symbol for the 

unit ‘grams’, which is one of the units used for mass. Next, students would need to search for 

the value of density to be substituted into the formula. To be successful, students would need to 

retrieve the schema (conceptual) that ‘density is the characteristic of a material’. This schema, 

upon interaction with the elements in the problem information, will inform the students that 

1.25 g/cm3 is the density of the 125 g of sugar solution as well, because 125 g and 500 ml of 

the same sugar solution will have the same density. After substituting the values into the 

formula, students would then need to apply their mathematical skills to compute the division. 

The whole process constitutes germane cognitive load which involves the retrieval of the 

schema (both conceptual and procedural) that identifies ‘g’ to be a unit of mass and thus ‘125 

g’ is the mass of the sugar solution, which interacts with the five elements (125, its unit g, 

division operation, 1.25 and its unit g/cm3 to come up with the final answer, 100 cm3). The 

interaction between these elements form a new, higher-level schema of density. 
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6.5.1.3.3. Solving part (c) of the density problem 

Solving this part of the problem involves a similar level of element interactivity to that 

found in part (b). Conceptual and procedural schemas are retrieved from LTM to interact with 

information in the problem to complete the mathematical procedures, constituting germane 

cognitive load. Students need to complete an algebraic manipulation of the density formula to 

determine the mass of 2.0 cm3 sugar solution (i.e., mass = density x volume), but for this part 

of the problem the relevant values need to be multiplied instead of divided. As with part (b), 

there is a need to retrieve the schema ‘density is a characteristic of the material’ from LTM, 

(students need to know that ‘2.0 cm3 of sugar solution’ has the same density as ‘500 ml of 

sugar solution’) in order to correctly substitute the value of density into the formula. In order to 

correctly substitute the value for volume, students need to retrieve the schema that identifies 

‘cm3’ to be a unit of volume, in turn, identifying ‘2.0 cm3’ as the volume of the sugar solution. 

As mentioned earlier, these processes constitute germane cognitive load leading to the 

construction of a higher-level schema of density. Element interactivity between the schemas 

that are retrieved (both conceptual and procedural) and the interacting elements in the problem 

(2.0, its unit cm3, multiplication operation, 1.25 and its unit g/cm3) results in the final answer, 

2.5 g.   

6.5.1.3.4. Solving part (d) of the density problem 

Solving this part of the problem also involves germane cognitive load element 

interactivity. To determine whether the cube floats or sinks in the sugar solution, students need 

to recall the concept of relative density (i.e., an object with lower density than the liquid it is in 

will float; and an object with higher density than the liquid it is in will sink). Therefore, 

students need to know the density of the cube, as well as the density of the sugar solution to 

determine whether the cube will float or sink in the sugar solution. The density of the cube can 

be derived from information provided in part (d) of the question (i.e., since density is the mass 
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in one unit of volume, so the density of the cube must be 1.1 g/cm3 since there is 1.1 g of mass 

in 1.0 cm3 of its volume) and the density of the sugar solution can be retrieved from the 

problem statement at the beginning of the problem (i.e., 1.25 g/cm3). Since the density of the 

cube (i.e., 1.1 g/cm3) is less than the density of the sugar solution (i.e., 1.25 g/cm3), the cube 

will float in the sugar solution. Recalling schema about the concept of relative density from 

LTM to interact with new information in the problem to explain the conclusions constitutes 

germane cognitive load. 

6.5.2. Part 2: Effects of Intervention on Students’ Achievement and Self-Concept  

The results of the experimental study are summarized in Table 6.1. Mean comparisons 

indicate that students did better in the post-test compared to the pre-test for each measure. A 

paired-samples t-test found that students performed significantly better (p < 0.01) in the 

Density post-test compared to the Density pre-test with a reasonably large effect size of d = 

0.78. These results suggest that the element interactivity intervention had positive effects on 

students’ achievement. For the Properties of Matter science topic, which had no intervention, 

the gain was small (d = 0.15) and statistically non-significant (p > 0.05). This could imply that 

the instructional strategies employed by the teachers, which did not address element 

interactivity, were not as effective in helping students attain optimal achievement.  

 

Table 6.1 

Comparing Scores from Pre-test and Post-test 

 

Pre-test Post-test 99% CI  

t(155) 

 

p 

Cohen’s 

d Mean SD Mean SD   LL  UL 

Density                                        2.22 1.54 3.56 1.33  0.98 1.70   9.68 < 0.001 0.78 

Properties of Matter                 2.43 1.58 2.71 1.21 -0.04 0.26   1.93    0.060 0.15 

Science Self-Concept 

(Density)                  

3.77 1.29 3.98 0.89  -0.04 0.19   1.69    0.090 0.14 

Note. N = 156. CI = confidence interval; LL = lower limit; UL = upper limit.  
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For science self-concept, I found high reliability estimates of alpha > 0.94 and > 0.85 

for the pre-test and post-test, respectively. This indicates that the four statements are a good 

measure of science self-concept before and after the Density topic was introduced. The 

difference between the pre-test (M = 3.77, SD = 1.29) and post-test (M = 3.98, SD = 0.89) was 

statistically non-significant (p > 0.05). However, this slight gain (d = 0.14), albeit non-

significant, is pleasing, considering the typical decline of students’ science self-concept in this 

age group (Marsh, 1989; Yeung, 2011).  

6.6. Discussion 

The main aim of this study was to illustrate how teachers can manage the element 

interactivity involved in learning a complex topic such as density, and to present some 

preliminary intervention effects of a series of in-service workshops that enabled teachers to 

apply an instructional strategy to manage element interactivity on students’ achievement and 

self-concept in physics. The results of the study indicate positive effects on students’ 

achievement and self-concept when teachers consciously use element interactivity as a 

construct to manage instruction and understand students’ cognitive processes during problem 

solving.  

Given the limited resources of the human working memory, science learning provides 

inherent challenges when handling complex learning tasks such as science problem solving. 

The cognitive load involved in learning tasks may be due to the element interactivity in dealing 

with (1) the nature and complexity of the learning material causing intrinsic cognitive load, 

and/or (2) sub-optimal instruction that does not contribute to learning, causing extraneous 

cognitive load; and/or (2) the interaction between pre-existing knowledge from LTM and new 

information in the WM which leads to learning, causing germane cognitive load. Progress in 

cognitive load theory has enabled us to understand the nature and consequences of each type of 

cognitive load. Knowledgeable teachers who devise optimal instruction practices to facilitate 
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students’ learning using cognitive load theory and who analyze element interactivity inherent 

in the learning material (i.e., intrinsic cognitive load), or the methods of learning (i.e., 

extraneous cognitive load), or the facilitation of schema construction and retrieval (i.e., 

germane cognitive load) will optimize their students’ learning potential.  

6.6.1. Practical Implications for Science Education 

6.6.1.1. Practice  

A significant purpose of instruction in science (and other school curriculum areas) is to 

facilitate schema construction and consolidation to enable easy retrieval from LTM (i.e., 

schema automation). One way of facilitating retrieval is through practice. Practice is essential 

for establishing links between conceptual and procedural elements of science problems in 

various forms and combinations, and leads to schema automation (Taconis, 2013). As with 

other learning tasks, practice sessions inevitably introduce cognitive load, which may be 

intrinsic, extrinsic, germane or a combination thereof. However, the cognitive load involved in 

practice is somewhat different from the cognitive load during the acquisition stage of new 

schema when neither the concept nor the procedure is well established. During acquisition, 

students are given the formula (e.g., density = mass ÷ volume) and other relevant conceptual 

and procedural knowledge; whereas during practice sessions, the formula is assumed to have 

become a part of students’ schema. As students go through practice sessions with problem 

solving tasks, they build upon their problem-based schemas, and develop and consolidate their 

conceptual and procedural knowledge leading to the construction of higher-level schemas in 

that learning domain, which are retained in the LTM. This enables them to effectively manage 

element interactivity when solving more complex problems, as they progress in their journey to 

become experts in that domain. However, to facilitate expertise, practice should be designed 

with the purpose of optimizing the positive effects of germane cognitive load. 
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6.6.1.2. Isolating interacting elements 

Instruction for novices need to be purposefully designed, beginning with simple 

problems containing few interacting elements, so that individual attention may be focused on 

those elements before interactions among them can be understood (Cook, 2006). Complex 

problems may be modified by breaking them down into simpler learning tasks, so that the 

simpler task with fewer interacting elements is better managed by students’ WM. The problem 

in Figure 6.1 is an example of such a learning task.  

Figure 6.1 is a science word problem that has been broken down into several parts. 

Each part focuses on one concept, which reduces intrinsic cognitive load. Extraneous cognitive 

load is also reduced as there is more emphasis on each problem part and results in fewer search 

processes being required to retrieve strategies to solve the main problem. Students who have 

successfully acquired the basic knowledge or schema that ‘density is a characteristic of a 

material’ or that ‘as the mass of an object decreases, the volume decreases proportionally, 

making the density of the object the same’ will be more able to manage the element 

interactivity in these problem parts. This is because students who have acquired relevant 

knowledge in the problem domain will have schema automation to manage element 

interactivity effectively. Students who have not acquired the relevant conceptual and 

procedural schemas (e.g., those who have not learned the topic or have received poor prior 

instruction), will likely experience element interactivity for each part of the problem that is too 

high for their WM. Optimal instruction for these students requires the problem to be broken 

into smaller units. In summary, it is critical that instruction is designed to suit a range of 

students’ knowledge bases, so that they are able to manage element interactivity effectively. 

The method of isolating interacting elements has been suggested by Ayres (2013). It allows 

students to construct simple lower-level schemas before progressing to construct higher-level 

schemas for the materials that involve more element interactivity (Ayres, 2013; Pollock et al., 
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2002). 

Another approach to reducing element interactivity in complex learning tasks is by 

introducing relevant knowledge schema, one at a time (Sweller et al., 2011). For example, if 

students are not able to assimilate both conceptual and procedural knowledge concurrently, 

teachers could reduce element interactivity by focusing on, for example, procedural knowledge 

before introducing conceptual knowledge at a later stage (Kester et al., 2006). Once students 

have acquired the relevant schema for one type of knowledge, the schema becomes automated 

and recalled as one element, thus reducing the number of elements (and possible element 

interactivity) that have to be dealt with by the WM, enabling learning of the other type of 

knowledge (Kadir et al., 2015).  

As students do more practice and gain knowledge, their schematic mental webs 

intensify, making schema automation possible whenever the need arises (Sweller et al., 2011). 

When conceptual and procedural knowledge are needed to solve science problems, they are 

best recalled as schemas. This reduces element interactivity, and so more WM resources are 

made available to process unfamiliar aspects of presented problems, which may constitute a 

higher cognitive load for those students who have not consolidated relevant schemas. Teachers 

who are able to analyze science learning tasks in terms of element interactivity will be able to 

isolate the interacting elements of complex problems to ensure that instruction is optimized 

towards appropriate levels for their students’ knowledge base in the domain. 

6.6.2. Recommendations  

To improve learning effectiveness and efficiency and to capitalize on recent 

developments in CLT in science education, I recommend that teachers consider: (1) element 

interactivity as a starting point for designing and choosing appropriate pedagogy (i.e., 

instruction and materials) to suit the needs of learners of varying ability levels in order to 

facilitate learning; (2) additional element interactivity that arises from interactions between 
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problem information and conceptual and procedural elements (in various forms and 

combinations) that contribute to the different types of cognitive load; (3) delineating and using 

element interactivity to analyze learning materials with a view to differentiation into simpler 

sub-tasks followed by increasing the complexity of the learning tasks as students gain more 

knowledge and procedural skills in the domain; (4) analyzing the element interactivity of 

methods and procedures used to solve problems and then teaching students the approach with 

the least element interactivity; (5) promoting germane cognitive load by emphasizing effective 

schema construction and retrieval automation by selecting cognitive strategies and procedures 

that effectively build upon students’ existing conceptual and procedural knowledge; and (6) 

paying attention to psychosocial factors that may affect WM resources devoted to learning 

tasks such as motivating students to devote their attention to science learning tasks, and 

increasing their self-concept so that they persist with challenging tasks and lower anxiety 

levels. 

6.7. Conclusion 

The results found in this study indicate that a teacher-focused element interactivity 

intervention benefitted students learning, as well as their self-concept. When element 

interactivity was managed in the topic of Density, students had higher achievement compared 

to another topic in which element interactivity was not managed. Analysis of science learning 

tasks in terms of element interactivity related to the three forms of cognitive load points to the 

practical benefits of using pedagogical strategies that minimize element interactivity and 

therefore facilitate learning. If element interactivity is effectively managed for students, the 

construction, development and automation of schemas to solve complex problems in science 

will be facilitated, making problem solving more manageable and more appealing for the 

students (Sweller et al., 2011). When students experience success in their science learning, they 
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may develop higher self-concept and thus be more motivated to engage in further science 

learning, thereby situating science education within a positive learning paradigm. 
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CHAPTER 7: STUDY 5 -                                                                                                              

Effects of a Dual-Approach Instruction on Students’ Science 

Achievement and Motivation 

 

7.1. Preface 

The overarching aim of this thesis was to investigate the interplay between the cognitive and 

motivational aspects of students’ learning. Study 5, the final study of this thesis, contributes 

to the aim by using the findings of Studies 1 to 4 to guide the design of an intervention which 

addresses both the cognitive and motivational learning processes and examine its effects on 

cognitive and non-cognitive educational outcomes: student achievement and motivation. 

Capitalizing on the cognitive and non-cognitive theories of education, the intervention of 

this study breaks down the complexity of the learning tasks and scaffolding the element 

interactivity of learning activities in terms of simple-to-complex sequencing of learning 

tasks, to make learning manageable for novice learners. In addition, interesting and 

meaningful hands-on activities were incorporated to excite students in a learning 

environment that also provided students with a sense of competence through teacher 

feedback, sense of autonomy through opportunities given for decision-making and a sense 

of relatedness by engaging in teamwork – which are the three basic psychological needs 

known to be driving forces of motivation. The findings will (1) show how addressing both 

the cognitive and motivational learning processes will affect student achievement and 

motivation, and (2) guide lesson design and instruction to ensure that both cognitive and 

motivational aspects of learning are addressed in order to optimize students’ learning 

potential.  



CHAPTER 7: Study 5 – Dual-Approach Instruction 

 

220 

 

7.2. Abstract 

The aim of the present study was to investigate the effects of a dual-approach instruction 

on students’ science achievement and motivation. The instruction was designed to 

facilitate both the cognitive and non-cognitive aspects of students’ learning. The effects 

were assessed through an intervention study with a pretest-intervention-posttest quasi-

experimental design. A total of seven teachers and 427 Grade 7 students participated in 

this study. Four teachers were assigned to the intervention condition and participated in a 

series of workshops on the dual-approach instruction. These teachers then applied the 

intervention in two science topics, speed and density, on 231 students. Multiple regression 

analyses of students’ achievement and motivation pre-test and post-test scores indicated 

that the intervention had a significant effect on students’ achievement in complex problem 

solving, as well as in the following six motivational attributes: self-regulation, 

engagement, sense of competence, task goal orientation, education aspiration, and career 

aspiration in science. The results suggest that the dual-approach benefits students in terms 

of dual outcomes: science achievement and motivation.   
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7.3. Introduction 

Improving students’ achievement in the field of science, technology, engineering, 

and mathematics (STEM) is the goal of many countries (National Research Council, 

2015). This is advocated because workers in the globally competitive fields of economic 

growth, health industries, and national security require knowledge and skills in STEM 

(Kearney, 2016, National Science Board, 2015; Organisation for Economic Co-operation 

and Development [OECD], 2011). Students’ declining interests in science and scientific 

pursuits and aspirations are a serious concern to some educators (Kearney, 2016). 

Decreasing numbers of student enrolments in university science courses lead to shortages 

of human resources in the field, and of science teachers in schools (Bawden, 2015; 

O’Leary, 2001). It is often argued that achievement is not the sole key driver of students’ 

choice of pursuing science-related fields (Wang & Degol, 2013). Research indicates that 

many students who excelled in school science do not choose to pursue science-related 

careers (National Science Board, 2014). Critically, students’ motivation in a subject 

domain plays an important role in students’ decisions to further their education and to 

choose to work in professions related to the domain (Wang & Eccles, 2012). Therefore, 

both achievement and motivation in science are necessary for students to have educational 

and career aspirations related to science.  

The purpose of the present study was to investigate whether both achievement and 

motivation could be effectively promoted through an instruction designed to facilitate 

students’ cognitive and non-cognitive processes on the basis of well-documented theories. 

This instruction was named the dual-approach instruction. Specifically, I focused on 

whether students’ achievement and motivation could be increased through training their 

teachers to use the dual-approach instruction (the intervention). Students’ achievement 
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and motivation in the intervention group was compared to those in the control group. The 

students in the control group did not experience the intervention and were taught by their 

usual teachers, using their normal teaching approach, which I referred to as regular 

instruction. Based on the work of Forbes, Kadir, and Yeung (2017), I hypothesized that 

when students learned in an environment which supported both their cognitive and 

psychological needs, they would be more likely to demonstrate a dual effect of enhanced 

academic achievement and positive motivational outcomes. The dual-approach instruction 

used: (1) cognitive load theory as a main framework to support students’ cognitive 

processes, and (2) self-determination theory as a main framework to enhance students’ 

motivation by supporting their basic psychological needs.  According to Phan, Ngu, & 

Yeung (2016), dual-approach instruction that facilitates both cognitive and motivational 

aspects of teaching and learning is the best practice for students to optimize their learning 

in any domain.  

7.3.1. Challenges 

Improving students’ achievement and motivation in science subjects is a 

challenging task. There have been many reports indicating that passive, teacher-led lessons 

are still the norm in classrooms all over the world (e.g., Andres, Steffen, & Ben, 2010). 

This traditional approach to learning has been criticized for its ineffectiveness in learning 

about science (Wieman, 2007). An effective science teaching approach provides learning 

opportunities that are not only meaningful, engaging, and motivating, but also within the 

cognitive capabilities of the students. However, most innovations in science instruction 

focus on either the cognitive (e.g., conceptual development or achievement) or non-

cognitive (e.g., motivation) aspects of learning. Research findings indicate a strong 

interplay between students’ achievement and motivation, including self-concept (Kadir, 
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2006; Kadir, Yeung, & Barker, 2012, 2013; Marsh & Craven, 2006), so both cognitive and 

non-cognitive processes have been used in the intervention reported in this study.  

7.3.2. Cognitive Processes 

Science, particularly in the field of physics, is widely perceived to be a difficult 

subject in school due to the complexity of its conceptual and abstract learning tasks (Shen 

& Pedulla, 2000). According to cognitive load theory (CLT; Sweller, Ayres, & Kalyuga, 

2011), complexity in learning occurs when learners are required to concurrently process 

learning elements that highly interact with one another in the working memory (Leahy, 

Hanham, & Sweller, 2015). The working memory of the brain is where mental activities 

take place (Miller, 1956). An element is “anything that needs to be or has been learned, 

such as a concept or a procedure” (Sweller, 2010, p. 124). When a learning task requires 

multiple elements to be learned together, the high degree of interactions between them 

results in high element interactivity (Sweller, 2010). Such learning tasks require a large 

amount of working memory resources, especially for students who lack relevant 

prior/background knowledge (Sweller et al., 2011). Due to the limitations of working 

memory resources in terms of capacity (Miller, 1956) and duration (Peterson & Peterson, 

1959), cognitive processing of these type of complex learning tasks easily overloads 

students’ working memory, which impedes new schema construction (Sweller et al., 

2011).  

A schema summarizes the common elements of related information, categorizes 

them and provides a generic characterization of the knowledge acquired (Anderson, Spiro, 

& Anderson, 1978). When information is effectively processed in the working memory, 

schemas are constructed and then stored in the long-term memory (Carlson, Chandler, & 

Sweller, 2003), a part of the brain which can store an infinite amount of information 
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(Landauer, 1986). When required, stored schemas can be retrieved (Valcke, 2002) and 

automated to interact with new information in the working memory. This process develops 

new science knowledge as higher-level schemas (Newell & Simon, 1972), which are then 

retained in the LTM. Therefore, schema acquisition and automation are two of the most 

important processes in learning and understanding (Carlson et al., 2003) and should be the 

goal of all instruction.  When schema construction is impeded, and learning is repeatedly 

hindered, students’ lack of success in the learning tasks could lead to frustration and 

negatively affect their motivation and future learning (Kadir, Ngu, & Yeung, 2015).  

In this study, the students experienced an intervention designed to reduce element 

interactivity at every stage of learning and to therefore facilitate the construction, retrieval 

and automation of schemas. Newly developed schemas provided mechanisms for students 

to solve more complex problems in the domain because each schema encapsulates 

interacting elements into a single unit in the working memory, thus reducing cognitive 

load (Blayney, Kalyuga, & Sweller, 2010). Past research has shown that reducing the 

element interactivity in complex learning tasks, hence reducing cognitive load, helped 

students attain higher achievement (Ngu, Cheung, & Yeung, 2015). Therefore, I 

hypothesized that when element interactivity was effectively managed during the learning 

process of two conceptually challenging science topics (speed and density), students would 

more successfully solve related complex problems than those students who did not receive 

the intervention.   

7.3.2.1. Cognitive strategy used in the intervention 

The isolating-elements strategy has been investigated by a number of CLT 

researchers and has shown to be effective in helping novices manage complex learning 

tasks (e.g., Ayres, 2013; Kalyuga, 2007; Kester, Kirschner, & van Merriënboer, 2006; 
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Pollock, Chandler, & Sweller, 2002). It works by reducing element interactivity through 

initially presenting learners with part-tasks (so students develop partial schemas), before 

progressing to whole tasks, which are then used to construct full schemas (Ayres, 2013; 

Pollock et al., 2002). This strategy involves creating sub-goals by removing several 

interacting elements from the to-be-learned task, and then introducing them at a later stage 

(Kalyuga, 2007). For example, if the task involves the learning of concepts and 

procedures, the isolating-elements strategy involves teaching the concepts prior to the 

procedure or vice versa but not both at the same time. Pollock et al. (2002) found that 

learners who were taught the concepts before the procedures or procedures before the 

concepts performed better than those who were taught concepts and procedures 

concurrently. Kester et al. (2006) isolated two types of information and found that learners 

benefitted more when presented with one type of information before another (in which the 

order does not matter) than when both types of information were presented together. 

Another approach to isolating elements is through scaffolding simple-to-complex 

sequences of learning activities (van Merriënboer, Kirschner, & Kester, 2003). In the 

present study, I used two approaches to isolating elements: science learning activities were 

introduced to the students in a simple-to-complex sequence, and science conceptual 

knowledge was introduced before procedural knowledge for physics problem solving.  

In a study by Blayney et al. (2010), the isolating-elements strategy was found to 

benefit students with low pre-existing knowledge more than those with high pre-existing 

knowledge in the domain. This is likely due to students with high pre-existing knowledge 

possessing schemas that can be retrieved from their long-term memory to interact with 

new elements in their working memory, using less working memory resources for the 

cognitive processing (Sweller et al., 2011). Such students will have sufficient working 
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memory resources to process learning tasks with full element interactivity (Kalyuga, 

2007). In contrast, students with low pre-existing knowledge lack schemas, so they need to 

use more of their working memory resources to deal with the incoming information 

(Blayney et al., 2010). In this study, students were considered to be novices in the topics of 

speed and density and so were unlikely to have relevant schemas to help them with the 

learning processes. Scaffolding of information in a sequence of learning tasks using the 

isolating-elements strategy was used so as not to overload students’ working memory 

(Ayres, 2013; Gerjets, Scheiter, & Catrambone, 2006).  

7.3.3. Non-Cognitive Processes 

Non-cognitive processes such as students’ psychological needs and motivation are 

equally, if not more, important than cognitive processes for supporting student learning. 

According to self-determination theory (SDT; Ryan & Deci, 2016), when students’ 

psychological needs (i.e., sense of competence, autonomy, and relatedness) are satisfied, 

their motivation is self-determined, and they are likely to function optimally (Deci & 

Ryan, 2008). Without substantial motivation, students pay less attention to the learning 

tasks presented to them, their working memory receives less information to process, 

schemas are less likely to be formed and learning is less likely to occur (Kadir et al., 

2015). Even the best cognitive strategies will fail when presented to unmotivated students. 

Therefore, both cognitive and non-cognitive factors of learning are necessary to help 

students achieve learning goals and to perform optimally (Phan et al., 2016).  

7.3.3.1. Non-cognitive strategy used in the intervention  

According to SDT, the highest quality of human motivation results when basic 

psychological needs for competence, autonomy, and relatedness are supported (Deci & 

Ryan, 2000). Competence is the feeling of being capable and effective in the way one 
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interacts with the environment (Niemiec & Ryan, 2009), autonomy is the feeling of doing 

something out of one’s own choice, such that one’s action is self-determined and volitional 

(Deci & Ryan, 1985) and relatedness is the feeling of being connected to those around you 

(Moller, Deci, & Elliot, 2010). These needs, when fulfilled, will produce an energetic 

driving force for motivated behaviors (Vansteenkiste, Niemiec, & Soenens, 2010). In 

contrast, when these needs are not fulfilled, motivation, growth, and well-being will be 

reduced (Deci & Ryan, 2000). Numerous studies using the SDT framework have shown 

that the fulfilment of students’ basic psychological needs for autonomy, competence, and 

relatedness is critical for their internalization of academic motivation and positive learning 

outcomes (Niemiec & Ryan, 2009). For example, Jang, Reeve, Ryan, and Kim (2009) 

found that the fulfilment of students’ basic psychological needs was associated with 

positive learning experiences and higher academic achievement. Similarly, in the study by 

Ng, Liu, and Wang (2016), students with high motivation reported high satisfaction of 

their basic psychological needs and also had high achievement. In the intervention, I aimed 

to fulfill students’ basic psychological needs with the goal of enhancing student motivation 

in science, by designing a science learning environment with essential features that support 

students’ sense of competence, autonomy, and relatedness. The satisfaction of these needs 

was measured by several learning outcomes such as achievement and motivated behaviors.  

7.3.3.2. Types of motivated behaviors 

In SDT, motivated behaviors can be placed along a continuum from autonomous to 

controlled (Ryan & Connell, 1989; Ryan & Deci, 2000). Deci and Ryan (2008) described 

autonomous and controlled motivation on the continuum: 
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Autonomous motivation comprises both intrinsic motivation and the types of 

extrinsic motivation in which people have identified with an activity’s value and 

ideally will have integrated it into their sense of self. When people are 

autonomously motivated, they experience volition, or a self-endorsement of their 

actions. Controlled motivation, in contrast, consists of both external regulation, in 

which one’s behavior is a function of external contingencies of reward or 

punishment, and introjected regulation, in which the regulation of action has been 

partially internalized and is energized by factors such as an approval motive, 

avoidance of shame, contingent self-esteem, and ego-involvements. When people 

are controlled, they experience pressure to think, feel, or behave in particular ways. 

Both autonomous and controlled motivation energize and direct behavior, and they 

stand in contrast to amotivation, which refers to a lack of intention and motivation 

(p. 182). 

The most autonomous type of motivation is intrinsic motivation and is associated with 

activities in which individuals personally choose to participate (in the absence of external 

stimuli), because they find the activities interesting and enjoyable (Ryan & Deci, 2000). 

Extrinsic motivation is subdivided into various forms of regulation ranging from 

autonomous to controlled. Integrated and identified regulations are forms of extrinsic 

motivation considered to be autonomous because individuals identify with an activity’s 

value and ideally will have integrated it into their sense of self, so they do the activity 

willingly because they see the value in doing it (Deci & Ryan, 2008). Introjected and 

external regulations are forms of extrinsic motivation considered to be controlled (Ryan & 

Deci, 2000). Individuals who experience introjected regulation have partially internalized 

their behavior but are mostly energized by factors such as approval motive, avoidance of 
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shame and ego-involvements (Deci & Ryan, 2008). Those who experience external 

regulation do something because of “external contingencies of reward or punishment” 

(Deci & Ryan, 2008, p. 182).   

Research has shown that satisfying students’ basic psychological needs would 

enhance their motivation (Deci & Ryan, 2000). As the intervention involves strategies to 

support students’ basic psychological needs, it was hypothesized that student motivation 

would be positively affected. In this study, student motivation was measured via several 

motivation outcomes. Students’ behavioral outcomes from motivation (i.e., self-regulation 

and engagement) and their academic self-concept (sense of competence) were measured 

because they are among the desired educational outcomes of the school. It was 

hypothesized that students who were motivated to learn science would be proactive in 

making sure that they understand the science concepts (self-regulation) and be attentive 

during science lessons (engagement). Similarly, those who believed that they could do 

well in science were hypothesized to rate themselves highly on the sense of competence 

scale. In addition to the behavioral outcomes, several types of motivation along the SDT 

motivation continuum were also measured (see Figure 7.1, adapted from Gagne & Deci, 

2005). Measuring motivation on the SDT continuum would facilitate the identification of 

the types of motivation most affected by the intervention. The autonomous motivation 

outcomes were Interest (intrinsic motivation), Task Goal Orientation (identified 

regulation), and Educational Aspiration (integrated regulation). Career Aspiration was 

labeled as being part integrated and part introjected. The controlled motivation outcome 

was Ego Involvement (introjected regulation). Since there were no reward-punishment 

features in the intervention, external regulation was not measured in this study. 

Amotivation was out of the scope of this study, so it was also not measured. Since 
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motivation and academic self-concept have been shown to be domain-specific (e.g., Kadir 

& Yeung, 2016; Yeung, Kuppan, Foong et al., 2010), all motivational factors were 

measured only within the science domain, as the intervention was on science topics. 

 

Figure 7.1. Motivational variables on the Self-Determination Theory (SDT) motivation 

continuum and other motivational behavioral outcomes measured in the study.  

 

7.3.4. Design of the Dual-Approach Instruction 

Two science units from the school curriculum (speed and density) were 

systematically revised in relation to the learning activities and lesson delivery. Principles 

of cognitive load theory (isolating-elements strategy) and self-determination theory 

(supporting students’ basic psychological needs) were included, as well as best practices in 

science learning such as group learning (Hardy, Jonen, Möller, & Stern, 2006) and guided-

inquiry (Riga, Winterbottom, Harris, & Newby, 2017). Appendix 7A shows a sample of 

eight learning activities from the density topic. Appendix 7B provides details on how the 
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activities (1) implemented the isolating-elements strategy to sequence the element 

interactivity and (2) fulfil students’ psychological needs.  

The learning sequences for each topic (speed and density) consisted of seven one-

hour lessons based on the original science materials for teachers by McDermott, Shaffer, 

and Rosenquist (1996) and materials developed in the PbI1@School research (Lau, Foong, 

Kadir, & Wong, 2011) for students. The PbI1@School research team had modified the 

teaching materials from McDermott et al. (1996) for use in the first intake of secondary 

students (Grade 7) in Singapore. Speed learning and teaching materials were adapted from 

Kadir, Foong, Wong, and Kuppan (2011) and density materials from Wong, Lim, Kadir, 

and Foong (2011). At the end of the speed unit, students were expected to be able to 

describe motion in terms of speed, draw a strobe diagram to represent speed, and apply the 

concept of speed as distance travelled per unit time to solve complex problems 

quantitatively. At the end of the density unit, students were expected to be able to explain 

why some objects float or sink, draw diagrams to show their understanding of density as a 

material property, and apply the concept of density as the amount of mass in a unit of 

volume to solve complex problems quantitatively.  

The teaching units were formulated using an adaptation of constructivist (Duit, 

1996) approaches, in which learning is deemed as a process in which learners actively 

construct meaning based on the pre-existing knowledge (Morton, 2012). This is in line 

with the cognitive processes described by CLT, whereby learning occurs when schemas 

are retrieved from the long-term memory (i.e., pre-existing knowledge) to interact with the 

new information (i.e., from the learning materials) in the working memory to construct 

new higher-level schemas to be stored in the long-term memory, if learning is successful 

(Sweller et al., 2011). To support these cognitive processes, the principles of structured 
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inquiry-based instruction (Windschitl, Thompson, Braaten, & Stroupe, 2012) were 

implemented. Yet, following criticisms that the inquiry-based approach to science learning 

is not effective for novice learners (Kirschner, Sweller, & Clark, 2006), we ensured that 

learners participated in a guided-inquiry approach (Riga et al., 2017) to minimize 

extraneous cognitive load. The isolated-elements strategy (e.g., Ayres, 2013; Pollock et al., 

2002) was included in both topics so that element interactivity was within novice students’ 

working memory capacity.  

During the intervention, students were engaged in carrying out hands-on 

experiments in teams of three or four students, making decisions as a team to decide on the 

next course of action, interpreting the results with their team members, documenting the 

results in their own worksheet, and discussing the assumptions and results with the 

teachers as a class. Such activities are similar with those in Hardy et al. (2006) and are 

known to help students make sense of scientific principles. The intervention also had 

processes in place to support students’ basic psychological needs of competence, 

autonomy and relatedness (see Appendix 7C for details). Students’ sense of competence in 

the learning environment was facilitated through teachers providing constructive feedback 

and encouragement to the students, while activities were designed to be within the 

cognitive capabilities of the students so that they experienced successful episodes during 

the learning processes. Students’ sense of autonomy was facilitated through meaningful 

and interesting hands-on activities with opportunities for students to contribute to team 

decisions. Teachers ensured that students worked harmoniously as a team and shared their 

findings with the class to develop a sense of relatedness by being a part of a learning 

community. The collaborative learning environment resembled that of the project work 

setting described in Wang, Liu, Koh, Tan, and Ee (2011), which included features of 
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teacher facilitation and peer support, and has shown to satisfy students’ basic 

psychological needs.  In sum, the role of the teacher is to facilitate and motivate, to 

structure and guide activities, to ask relevant questions, and to provide support and 

encouragement when needed. 

7.3.5. Design of the Science Knowledge Tests 

All summative science knowledge tests were designed by teachers according to the 

stipulated school science syllabus of each topic: heat, forces, speed, and density. Test 

questions were reviewed by the researchers before being administered to students. The 

pre-test was conducted before the start of each topic and the post-test at the end of the last 

lesson of each topic.  Each pre-test was designed to assess the pre-existing knowledge of 

students in the topic area. These questions were reviewed by teachers and researchers as 

generally having low element interactivity. The post-test of each topic was designed to 

investigate the learning transfer of each topic: specifically, the ability of students to apply 

learned concepts to solve novel (new) science problems. Therefore, the pre- and post-test 

questions were not identical. Each post-test consisted of two sections to differentiate 

between students’ levels of understanding of the learning materials and to uncover any 

interventions effects due to cognitive strategies (Leahy et al., 2015): one contained simple, 

low element interactivity questions (as reviewed by teachers and researchers); the other 

contained more complex, high element interactivity questions.  

7.3.6. This Study 

The present study adds to the research literature by reporting findings where 

students in an intervention student group experienced the isolating-elements strategy with 

sequenced learning activities instead of worked examples and information sheets, 

combined with strategies from self-determination theory (SDT). The control group 
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experienced regular instruction for the same science topics (speed and density), involving 

lecture-style delivery of theoretical information from teachers to students (while students 

copied notes in their worksheets), and one hands-on laboratory session for each topic to 

affirm what students learned during the theory lessons (see Appendix 7D for a comparison 

between dual-approach instruction and regular instruction).  

To account for teacher effects (since different teachers taught the control and 

intervention groups), prior to the intervention, we compared all students’ achievement 

scores on two different science topics (heat and forces), which were taught using 

traditional instruction strategies. The effectiveness of the intervention was assessed in 

terms of student achievement and motivation outcomes. Achievement was measured by 

comparing students’ pre- and post-test scores in all four science topics (heat, forces, speed, 

and density). Motivation was measured using students’ responses to a perception survey 

administered at the end of the school semester, when all teaching and testing was 

completed.  

7.3.7. Hypotheses  

The hypotheses for this study included: 

1. Both student groups will attain higher achievement scores in low element 

interactivity tasks compared with high element interactivity tasks, for all science 

topic tests.  

2. Heat and forces achievement scores will be similar for both student groups after 

controlling for students’ pre-existing knowledge (i.e., pre-test).  

3. Speed and density (in which the dual-approach instruction was applied to the 

intervention group) achievement scores will be higher in the intervention group for 

high element interactivity questions only.  
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4. Motivation scores will be higher in the intervention group.  

7.4. Method 

7.4.1. Participants 

The data were collected from eleven Grade 7 classes (i.e., first year of secondary 

school, commonly known as secondary one in Singapore) from a school located in the 

eastern part of Singapore. The school opted to have the entire cohort of Grade 7 students 

participate in the study. Participation was voluntary and a total of 427 consenting students 

(232 females and 195 males) were involved in the study. Students were mostly from 

medium to high socio-economic backgrounds and used English as the main language of 

communication.  

Five classes (196 students: 118 girls and 78 boys, M = 13.5 years, SD = 0.3) were 

randomly assigned to be in the control group to experience regular instruction in all four 

science topics: heat, forces, speed, and density. The remaining six classes (231 students: 

114 girls and 117 boys, M = 13.4 years, SD = 0.40) were assigned to the intervention 

group to experience regular instruction in the science topics of heat and forces and dual-

approach instruction in the topics of speed, and density. All lessons were conducted as 

part of the school science curriculum, during standard school hours. Each class size was 

similar, ranging from 36 to 40 students.  

All seven teachers teaching the Grade 7 science classes in the school consented to 

participating in the study voluntarily, without receiving additional pay or incentives. The 

four teachers who volunteered for the intervention training for the topics of speed, and 

density taught the intervention group classes while the remaining three teachers taught the 

control group classes. Special care was taken to ensure that no teacher taught in both the 

control and intervention classes. All of teachers had been full-time teachers throughout 
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their career, were of similar age, had similar science teaching experience (i.e., at least 5 

years), and had similar motivation and science teaching skills (based on teacher 

assessment grades acquired from the school) prior to the intervention training.  

The study was approved by the Ministry of Education, Singapore. All ethics 

procedures were strictly followed, participation was voluntary, and data collected were 

anonymized before analysis. Teachers and students agreed to participate in the study, and 

to be filmed for the purpose of intervention fidelity. Parents of the student participants 

provided written consent for their child’s participation. Teachers and students were 

informed that they could withdraw their participation at any time.  

7.4.2. Procedure 

The participating secondary school separates its science curriculum into physics, 

chemistry and biology from Grade 7 onwards. Since the school only accepts students who 

performed well (i.e., top 30%) in the local national examinations at the end of Grade 6, 

students were expected to be ready to learn the separate branches of science from Grade 7 

onwards. At the time of the study during the first half of the year, the school was 

implementing the physics component of the Grade 7 science curriculum, so only physics 

topics were used in the study.   

In the beginning of the year, all teachers delivered lessons on the science topics of 

heat and forces in a similar way, using the same lesson plans and materials finalized by the 

science department of the school. This instruction, identified as regular instruction in the 

study, was described by science teachers during their interviews. Characteristics matched 

those in field notes taken by researchers during the regular instruction lesson observations.    

Four teachers in the intervention group participated in seven 1-hour workshops on 

dual-approach instruction, which were mostly held after curriculum hours. During the 
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workshops, teachers were introduced to knowledge about students’ cognitive processes 

and how to use the isolated-elements strategy to manage element interactivity at each stage 

of learning. They were also introduced to knowledge about self-determination theory, and 

how to create learning climates to support students’ basic psychological needs: 

competence, autonomy, and relatedness. Participating teachers viewed video clips of dual-

approach instruction featuring teachers facilitating hands-on activities, while giving 

positive feedback and encouraging remarks to motivate students, and these clips were then 

analyzed, and discussed. Participants received instructional materials on speed, and density 

and engaged in activities where they applied their knowledge to: (1) manage element 

interactivity in the learning materials and instructional delivery, and (2) create learning 

environments to provide students with a sense of competence, autonomy, and relatedness. 

Researchers and teachers also role-played some of the of dual-approach instruction lesson 

plans on speed, and density by taking on the roles of teachers and students. In the final 

workshop, student learning materials and lesson plans on speed, and density were finalized 

by the researchers and teachers. Teachers then delivered lessons on speed, and density 

using the dual-approach instruction as stipulated in the lesson plans while teachers in the 

control condition delivered lessons on the same topics using regular instruction.   

Both the control and intervention groups each taught their topics for seven 1-hour 

lessons (i.e., 3 weeks). Online questionnaires asking students to rate their motivation were 

completed in the computer lab in the presence of a teacher, when all four science topics 

had been taught. All students did the same science achievement tests in the same four 

science topics before the start (i.e., pre-test) and after the completion (i.e., post-test) of the 

lessons of each topic. To minimize missing data, teachers arranged for students who were 

absent to complete online surveys/tests within the next few days.  
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7.4.2.1. Intervention fidelity  

To evaluate the extent to which the intervention was implemented as planned, we 

focused on five key elements of intervention fidelity: design, workshops on dual-approach 

instruction, intervention delivery, intervention receipt, and intervention enactment (cf., 

Smith, Daunic, & Taylor, 2007). Lesson observations in the intervention condition 

indicated that teachers adhered to the co-designed lesson plans, and teacher manual, and 

were able to administer the lessons within the stipulated timeframe. Lesson observations in 

the control condition indicated that the teachers were teaching in the same way as 

described during the interviews prior to the intervention (i.e., using the regular 

instruction).  

The workshop series on dual-approach instruction was delivered by me, as I had 

previous experience in delivering professional development programs for science teachers. 

All teachers in the intervention condition attended all the workshops at the same time to 

ensure systematic delivery across teachers, and to maximize the fidelity of intervention 

delivery. In addition to this, the first author was stationed in the school during the period of 

intervention delivery, so that teachers could readily consult about the intervention. The 

first author also met with the teachers in the intervention condition every week for a 

discussion to reflect on the intervention delivery, to ensure understanding of the 

intervention, and to answer any questions. To evaluate the intervention enactment, all 

video recordings of the lessons were viewed and checked against the lesson plans and 

teacher manual. There were no abnormalities or departure from procedures found.  

For lessons without a researcher as observer, a 5-minute episode of each video clip 

was coded for student-teacher interaction and characteristics of the lesson about half-way 

through each lesson. Analysis of these episodes correlated with field notes taken from the 
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lesson observations i.e., that students in the control condition were passively listening to 

teacher-talk while taking notes in their worksheets, and mainly following instructions 

during the two laboratory sessions and students in the intervention condition were engaged 

in hands-on science activities, discussing their work in teams, recording their findings in 

guided worksheets, with their teachers working as facilitators of learning, and providing 

constructive feedback and encouragement to the students. Appendix 7C provides details of 

observed teacher and student behaviors in the intervention condition, which correlate with 

guidelines of a learning environment where students are supported in their basic 

psychological needs of competence, autonomy and relatedness.  

7.4.3. Material  

Although Grade 7 students in Singapore have not yet received formal physics 

instruction in primary school, it is possible that some of the students had pre-existing 

knowledge of the topics, either from their life experiences, enrichment classes or elements 

of the general science lessons they received from their previous school (i.e., primary 

school). To measure students’ learning gains in the four science topics (heat, forces, speed, 

and density), pre-tests and post-tests were administered to the students before the first 

lesson and after the final lesson of each topic, respectively. To measure how students 

developed in terms of their motivation in science over time, students completed a 

motivation pre-test survey online at the beginning of the school year (i.e., before the start 

of their Grade 7 science lessons) and completed the same motivation post-test survey 

online when all the four science topics had been taught. The duration of time between the 

pre-test and post-test of each science topic was about 3 weeks, and that of the motivation 

survey was 20 weeks. Appendix 7E provides an overview of the administration of the 

tests.  
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7.4.3.1. Measurement of achievement 

Students’ pre-test and post-test scores were used to measure their achievement. The 

pre-test for each science topic assessed students’ pre-existing knowledge. Each pre-test 

comprised five one-mark items and assessed students’ understanding of basic concepts of 

each topic. The items were adapted from Lau et al. (2011). Each item was analyzed in 

terms of element interactivity by two researchers. Items were modified so that all had low 

element interactivity, a process that was agreed to by both the researchers and teachers to 

encourage student engagement in the topic. An inter-rater agreement of 96% was achieved 

for the coding.  Scoring of the pre-test for each of the four science topics was firstly done 

by the teachers, based on a common marking scheme adapted from Lau et al. (2011). The 

pre-test scripts were then passed on to the researchers for scoring and an inter-rater 

agreement of 88% was achieved between teachers and researchers. Teachers and 

researchers discussed the discrepancies to arrive at the final pre-test score for each student 

on each of the four topics.  

The post-test for each science topic was designed to assess students’ understanding 

and ability to apply their understanding to solve complex problems. Each post-test totaled 

ten marks and comprised two sections. Section A was designed to include only low 

element interactivity questions and comprised five one-mark items. Section B was 

designed to include only high element interactivity questions and comprised structured 

questions totaling five marks. The items were adapted from Lau et al. (2011), and 

modified to meet the element interactivity requirements of each section of the post-test.  

Each item was analyzed in terms of element interactivity and coded as ‘low’ or ‘high’ by 

two researchers. An inter-rater agreement of 82% was achieved for the coding. 

Discrepancies were discussed to arrive at a common conclusion. As with the pre-test, 
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scoring of the post-test for each of the four science topics was firstly completed by 

teachers, based on a common marking scheme adapted from Lau et al. (2011). The post-

test scripts were then passed on to the researchers for scoring and an inter-rater agreement 

of 90% was achieved between teachers and researchers. Discrepancies were discussed to 

arrive at the final scores. Each student had two post-test scores: one for the low element 

interactivity items from Section A (full score = 5 marks) and another for the high element 

interactivity items from Section B (full score = 5 marks). Examples of low element 

interactivity items are given in Appendix 7F and high element interactivity items are given 

in Appendix 7G.  

7.4.3.2. Measurement of motivation 

After consulting several scales, student motivation outcomes were measured using 

different types of motivational items ranging from autonomous to controlled regulation, as 

stipulated in the SDT continuum (Figure 7.1). The items were given to two expert 

researchers in the field, who coded them according to the factors, based on the best face 

validity. Inter-rater codes correlated at 0.82. Confirmatory factors analyses (CFAs) further 

supported the contention that these items measure the respective motivational factors. The 

maximal reliabilities (Raykov, 2004) of the eight factors at pre-test and post-test ranged 

from 0.80 to 0.90. These high reliabilities provided support for the motivational factors. 

The list of items and the maximal reliability for each motivation factor for both pre-test 

and post-test are given in Appendix 7H. Student responses to all the motivation items were 

given on a 6-point Likert scale ranging from 1 (disagree strongly) to 6 (agree strongly). All 

the items were randomized in the motivation survey form. 
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7.4.3.2.1. Self-regulation 

The self-regulation factor assesses students’ reported behavior when they do not 

understand a science concept. When students are motivated in science, they tend to be 

proactive in doing something to ensure that they understand confusing science concept. 

Self-regulation was measured by four items (e.g., “When I’m reading my science materials 

and do not understand something, I stop and think it over”), adapted from the Motivated 

Strategies for Learning Questionnaire (MSLQ; Pintrich & Degroot, 1990). In the study, 

this factor has maximal reliabilities of 0.86 and 0.83 for pre-test and post-test, respectively.  

7.4.3.2.2. Engagement  

The engagement factor measures students’ perceptions of their attentiveness during 

science lessons. Engagement was measured by four items (e.g., “I am attentive to my work 

in SCIENCE.”), adapted from Yeung, Kuppan, Kadir, and Foong (2010) and Steinberg, 

Lamborn, Dornbusch, and Darling (1992). In the study, this factor has maximal 

reliabilities of 0.88 and 0.90 for pre-test and post-test, respectively.  

7.4.3.2.3. Sense of competence 

 The sense of competence factor measures students’ perceptions of their science 

ability and is a cognitive component of science self-concept. Sense of competence was 

measured by four items (e.g., “I am good at science”), adapted from the Academic Self-

Description Questionnaire (ASDQ; Marsh, 1992) and Kadir et al. (2013). In the study, this 

factor has maximal reliabilities of 0.90 and 0.86 for pre-test and post-test, respectively.  

7.4.3.2.4. Interest 

The interest factor measures the extent of students’ enjoyment and interest in 

science. This is an affective component of science self-concept and is also a form of 

intrinsic motivation and links to self-determined regulation identified by SDT. Interest was 
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measured by four items (e.g., “I find science interesting”), taken directly from Kadir et al. 

(2013) who adapted the scale from the study by Marsh, Craven, and Debus (1999), Elliot 

and Church’s (1997) measure of personal interest and enjoyment and the Yeung, Chow, 

Chow, Luk, & Wong (2004) measure of students’ affect in other curriculum areas. In the 

study, this factor has maximal reliabilities of 0.90 and 0.88 for pre-test and post-test, 

respectively.  

7.4.3.2.5. Task goal orientation  

The task goal orientation factor measures the degree of students’ autonomous 

motivation in science (i.e., identified regulation) by asking students to rate the reasons that 

they do their work based on their goals, values and regulations in science. The four items 

that measured task goal (e.g., “An important reason I do my work in science is that I like 

to learn new things”) were adapted from the Academic Self-Regulation Questionnaire 

(SRQ-A; Ryan & Connell, 1989) and the School Motivation Questionnaire (SMQ; Marsh, 

Craven, Hinkley, & Debus, 2003). In the study, this factor has maximal reliabilities of 0.90 

and 0.80 for pre-test and post-test, respectively.  

7.4.3.2.6. Education aspiration  

The education aspiration factor asked students about their aspiration to pursue 

science courses at advanced levels in future. This factor measures the degree of students’ 

autonomous motivation (i.e., integrated regulation). Education aspiration was measured by 

four items (e.g., “I would like to study SCIENCE in college/ university”), adapted from 

Yeung and McInerney (2005) and Kadir et al. (2012). In the study, this factor has maximal 

reliabilities of 0.83 and 0.84 for pre-test and post-test, respectively.  
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7.4.3.2.7. Career aspiration 

The career aspiration factor asked students about their aspiration to have a science-

related career in future. This factor also measures the degree of students’ autonomous 

motivation (i.e., integrated regulation). Career aspiration was measured by four items (e.g., 

“I want to have a job that has to do with science”), adapted from Yeung and McInerney 

(2005) and Yeung, Kuppan, Kadir et al. (2010). In the study, this factor has maximal 

reliabilities of 0.89 and 0.88 for pre-test and post-test, respectively.  

7.4.3.2.8. Ego involvement 

The ego involvement factor measures the degree of students’ controlled motivation 

(i.e., introjected regulation) to show others that they are good in science. Ego Involvement 

was measured by four items (e.g., “I want to show others that I am smart in science”). The 

items were largely adapted from the introjected items of the Academic Self-Regulation 

Questionnaire (SRQ-A; Ryan & Connell, 1989). In the study, this factor has maximal 

reliabilities of 0.82 and 0.86 for pre-test and post-test, respectively.  

7.4.4. Statistical Analysis 

The first stage of the data analysis was testing the validity of the survey instrument. 

To this end, CFAs were used in different steps (Brown, 2006). In the first step, a CFA 

model was conducted separately for each factor to determine how well each latent 

motivational factor was defined by the items. In the second step, a test of longitudinal 

measurement invariance was conducted for the latent motivational factors measured at the 

two time-points, pre-test and post-test. The objective of the measurement invariance was to 

ensure an equal definition of the latent motivational factors over time. Following common 

practice in CFA, goodness of fit was evaluated using the following indices: the 

Comparative Fit Index (CFI), the Tucker-Lewis Index (TLI), the Root Mean Square of 
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Approximation (RMSEA) at its 90% confidence interval (CI). Using Hu and Bentler’s 

(1999) guidelines for evaluating overall model fit, a TLI and CFI > 0.95, and RMSEA < 

0.05 indicated an adequate model fit to the observed data. To assess the longitudinal 

measurement invariance, a stepwise procedure (Vandenberg & Lance, 2000), relying on 

the comparison of progressively more restricted measurement models, was followed. 

These measurement models were nested and ∆CFI was used to assess measurement 

invariance (Cheung & Rensvold, 2002). According to Cheung and Rensvold (2002), ΔCFI 

is robust for testing the between-group invariance of CFA models. An absolute value of 

ΔCFI smaller than, or equal to 0.01, indicates that the null hypothesis of invariance should 

not be rejected (Cheung & Rensvold, 2002).  If the results of the factor structure analysis 

and longitudinal invariance test showed that the instrument is valid, the means of each 

factor was computed and used in all other analyses. The amount of missing data over the 

two time-points (pre- and post-tests) was small (< 1%) and was handled by the full 

information maximum likelihood estimation (FIML), available in Mplus V7 (Muthén & 

Muthén, 1998–2015). FIML utilizes all the available information during the estimation 

process and provides consistent and efficient parameters and has shown to function well in 

accounting for missing data in SEM models (Enders, 2010).  

Next, MANOVA was conducted to compare the two group’s (intervention vs 

control) means on the achievement and motivational factors at pre-test and post-test. For 

ease of readership, the descriptive statistics and the t-value for each variable were 

presented. As the data had a hierarchical structure because students in the study were 

nested in classes, complex statistical procedures such as multiple regression analysis with 

adjusted standard errors were warranted. Therefore, we estimated two regression models 

for each of the eight achievement variables and eight motivational factors. All variables 
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were standardized before running the analyses. In Model 1, we predicted students’ 

achievement and motivation at post-test with the groups only. In Model 2, we added 

students’ pre-test scores and gender as predictors to control for pre-existing differences 

and for the uneven distribution of boys and girls between the groups. We calculated R2 as a 

measure of explained variance. Finally, we accounted for the non-independence of the 

observations by adjusting the standard errors using the sandwich estimator implemented in 

Mplus V7 (Muthén & Muthén, 1998-2015). According to Hedges (2007), standardized 

mean differences (i.e., the means of two comparison groups divided by the standard 

deviation) represent effect sizes. As the standardization of all continuous variables were 

done before running the analyses, the regression coefficients β of the dummy variables 

(i.e., groups and gender) represented the standardized mean differences. Therefore, the 

effects of the intervention condition compared to the control group could be interpreted as 

effect sizes (Hedges, 2007).  

7.5. Results 

7.5.1. Descriptive Statistics for the Item Variables 

Table 7.1 provides an overview of the descriptive statistics and bivariate 

correlations of all the 33 item variables in the motivation survey at pre-test, for all 

participants. The mean of the variables ranged from 3.43 to 5.25. The correlations between 

motivational variables within the same factors were all positive and statistically significant 

(p < .001). For example, correlations between the variables in the Self-Regulation factor 

(Sre1-4) ranged from 0.51 to 0.67 and that for the Engagement factor (Eng1-5) ranged 

from 0.47 to 0.67.  
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Table 7.1 

Descriptive Statistics and Bivariate Correlations for the Measured Motivational Variables of the Study at Pre-Test 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

 1     Sre1 -                                 

2    Sre2 0.58*** -                                

3    Sre3 0.51*** 0.67*** -                               

4    Sre4 0.62*** 0.70*** 0.62*** -                              

5    Eng1 0.40*** 0.47*** 0.41*** 0.46*** -                             

6    Eng2 0.42*** 0.49*** 0.38*** 0.51*** 0.59*** -                            

7    Eng3 0.37*** 0.46*** 0.39*** 0.42*** 0.67*** 0.58*** -                           

8    Eng4 0.38*** 0.52*** 0.37*** 0.44*** 0.47*** 0.59*** 0.47*** -                          

9    Eng5 0.44*** 0.55*** 0.43*** 0.54*** 0.54*** 0.61*** 0.47*** 0.63*** -                         

10   Com1 0.22*** 0.31*** 0.21*** 0.36*** 0.22*** 0.29*** 0.22*** 0.24*** 0.33*** -                        

11    Com2 0.16*** 0.26*** 0.21*** 0.34*** 0.23*** 0.23*** 0.23*** 0.18*** 0.34*** 0.69*** -                       

12   Com3 0.17*** 0.25*** 0.18*** 0.33*** 0.26*** 0.23*** 0.24*** 0.18*** 0.31*** 0.71*** 0.67*** -                      

13   Com4 0.28*** 0.35*** 0.25*** 0.40*** 0.28*** 0.34*** 0.33*** 0.24*** 0.36*** 0.70*** 0.60*** 0.66*** -                     

14   Int1 0.33*** 0.44*** 0.31*** 0.46*** 0.33*** 0.39*** 0.31*** 0.39*** 0.46*** 0.52*** 0.47*** 0.55*** 0.53*** -                    

15   Int2 0.34*** 0.49*** 0.35*** 0.49*** 0.40*** 0.45*** 0.37*** 0.42*** 0.51*** 0.51*** 0.49*** 0.57*** 0.55***   0.75*** -                   

16   Int3 0.47*** 0.53*** 0.47*** 0.52*** 0.41*** 0.45*** 0.37*** 0.50*** 0.52*** 0.44*** 0.40*** 0.42*** 0.52***   0.65*** 0.67*** -                  

17   Int4 0.34*** 0.43*** 0.38*** 0.45*** 0.36*** 0.32*** 0.38*** 0.28*** 0.36*** 0.49*** 0.48*** 0.51*** 0.52***   0.66*** 0.66*** 0.56*** -                 

18   Tgo1 0.50*** 0.63*** 0.50*** 0.61*** 0.42*** 0.47*** 0.38*** 0.47*** 0.55*** 0.45*** 0.42*** 0.46*** 0.52***   0.66*** 0.71*** 0.63*** 0.58*** -                

19   Tgo2 0.51*** 0.57*** 0.46*** 0.57*** 0.38*** 0.42*** 0.37*** 0.44*** 0.43*** 0.38*** 0.37*** 0.35*** 0.41***   0.58*** 0.56*** 0.57*** 0.53*** 0.66*** -               

20  Tgo3 0.51*** 0.61*** 0.48*** 0.63*** 0.41*** 0.47*** 0.40*** 0.44*** 0.53*** 0.53*** 0.48*** 0.53*** 0.59***   0.69*** 0.70*** 0.64*** 0.65*** 0.73*** 0.66*** -              

21   Tgo4 0.48*** 0.65*** 0.55*** 0.64*** 0.39*** 0.49*** 0.42*** 0.47*** 0.58*** 0.46*** 0.48*** 0.46*** 0.52***   0.62*** 0.64*** 0.64*** 0.55*** 0.75*** 0.62*** 0.73*** -             

22  Eda1 0.30*** 0.42*** 0.34*** 0.52*** 0.31*** 0.38*** 0.30*** 0.29*** 0.43*** 0.48*** 0.43*** 0.50*** 0.50***   0.63*** 0.65*** 0.55*** 0.51*** 0.62*** 0.51*** 0.61*** 0.63*** -            

23  Eda2 0.25*** 0.35*** 0.22*** 0.34*** 0.25*** 0.28*** 0.30*** 0.24*** 0.32*** 0.37*** 0.32*** 0.45*** 0.41***   0.52*** 0.58*** 0.43*** 0.44*** 0.50*** 0.36*** 0.54*** 0.49*** 0.55*** -           

24  Eda3 0.30*** 0.29*** 0.24*** 0.31*** 0.24*** 0.23*** 0.24*** 0.19*** 0.27*** 0.32*** 0.36*** 0.35*** 0.35***   0.40*** 0.41*** 0.33*** 0.40*** 0.38*** 0.32*** 0.43*** 0.44*** 0.46*** 0.49*** -          

25  Eda4 0.21*** 0.35*** 0.21*** 0.37*** 0.29*** 0.33*** 0.29*** 0.28*** 0.42*** 0.48*** 0.45*** 0.50*** 0.48***   0.64*** 0.62*** 0.45*** 0.48*** 0.54*** 0.44*** 0.57*** 0.52*** 0.70*** 0.58***   0.45*** -         

26  Caa1 0.32*** 0.42*** 0.35*** 0.43*** 0.32*** 0.31*** 0.33*** 0.26*** 0.34*** 0.38*** 0.36*** 0.42*** 0.40***   0.52*** 0.59*** 0.47*** 0.55*** 0.51*** 0.44*** 0.55*** 0.50*** 0.51*** 0.53***   0.36*** 0.50*** -        

27  Caa2 0.27*** 0.39*** 0.26*** 0.38*** 0.27*** 0.34*** 0.28*** 0.30*** 0.39*** 0.42*** 0.36*** 0.48*** 0.44***   0.57*** 0.66*** 0.49*** 0.46*** 0.51*** 0.38*** 0.56*** 0.53*** 0.57*** 0.68***   0.44*** 0.58*** 0.67*** -       

28  Caa3 0.25*** 0.37*** 0.26*** 0.34*** 0.26*** 0.31*** 0.30*** 0.26*** 0.37*** 0.41*** 0.38*** 0.46*** 0.45***   0.53*** 0.61*** 0.47*** 0.41*** 0.48*** 0.38*** 0.52*** 0.51*** 0.55*** 0.72***   0.47*** 0.60*** 0.60*** 0.77*** -      

29  Caa4 0.17*** 0.27*** 0.13** 0.22*** 0.10* 0.19*** 0.16*** 0.12* 0.17*** 0.35*** 0.29*** 0.41*** 0.31***   0.44*** 0.48*** 0.33*** 0.32*** 0.37*** 0.25*** 0.43*** 0.36*** 0.42*** 0.65***   0.43*** 0.54*** 0.55*** 0.66*** 0.69*** -     

30  Ego1 0.15** 0.17*** 0.18*** 0.18*** 0.22*** 0.22*** 0.24*** 0.22*** 0.24*** 0.34*** 0.26*** 0.30*** 0.31***   0.17*** 0.19*** 0.26*** 0.13** 0.19*** 0.17*** 0.18*** 0.21*** 0.21*** 0.11*   0.09 0.14** 0.09 0.11* 0.16*** 0.08 -    

31   Ego2 0.08 0.14** 0.19*** 0.20*** 0.15** 0.15** 0.20*** 0.07 0.14** 0.28*** 0.27*** 0.24*** 0.27***   0.15** 0.16** 0.16** 0.13** 0.13** 0.13** 0.15** 0.18*** 0.22*** 0.11*   0.12* 0.19*** 0.11* 0.13** 0.20*** 0.07 0.62*** -   

32  Ego3 0.12* 0.13** 0.14** 0.13** 0.19*** 0.14** 0.18*** 0.11* 0.17*** 0.22*** 0.20*** 0.20*** 0.22***   0.14** 0.23*** 0.19*** 0.17*** 0.15** 0.16** 0.10* 0.17*** 0.16*** 0.14**   0.16** 0.16*** 0.16** 0.19*** 0.19*** 0.15** 0.45*** 0.47*** -  

33  Ego4 0.05 0.07 0.13** 0.11* 0.08 0.02 0.12* 0.04 0.08 0.18*** 0.11* 0.17*** 0.21*** -0.02 0.07 0.13** 0.04 0.01 0.05 0.03 0.06 0.04 0.08 -0.00 0.05 0.06 0.08 0.14** 0.07 0.58*** 0.59*** 0.51*** - 

Mean 4.60 4.83 4.82 4.68 4.96 4.83 5.06 5.25 5.06 4.02 4.11 3.94 4.25 4.49 4.58 4.82 4.93 4.74 4.80 4.58 4.62 4.25 3.82 4.01 4.15 4.54 4.26 3.92 3.70 3.90 3.43 4.03 3.82 

SD 1.03 0.95 0.98 0.97 0.86 0.86 0.75 0.84 0.87 1.16 1.15 1.29 1.11 1.16 1.14 1.02 1.05 1.01 1.00 1.00 1.04 1.20 1.30 1.14 1.29 1.21 1.26 1.29 1.35 1.20 1.28 1.24 1.29 

Note. N = 427. All variables were measured on a 1-6 Likert scale; Sre1-4 = Self-Regulation variables 1 to 4; Eng1-4 = Engagement variables 1 to 

4; Com1-4 = Sense of Competence variables 1 to 4; Int1-4 = Interest variables 1 to 4; Tgo1-4 = Task Goal Orientation variables 1 to 4; Eda1-4 = 

Educational Aspiration variables 1 to 4; Caa1-4 = Career Aspiration variables 1 to 4; Ego1-4 = Ego Aspiration variables 1 to 4; SD = standard 

deviation; *p < .05, **p < .01, ***p < .001. 
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Similar numbers were observed for Sense of Competence (Com1-4: 0.60 to 0.71), Interest 

(Int1-4: 0.56 to 0.75), Task Goal Orientation (Tgo1-4: 0.62 to 0.75), Educational Aspiration 

(Eda1-4: 0.45 to 0.70), Career Aspiration (Caa1-4: 0.55 to 0.77), and Ego Involvement (Ego1-

4: 0.45 to 0.62). 

Positive and statistically significant correlations were also observed across the 

motivational behavioral outcome variables (i.e., Self-Regulation, Engagement, and Sense of 

Competence) and the motivational factors on the autonomous motivation spectrum on the SDT 

continuum. Variables from Ego Involvement, the only controlled motivation factor, were not 

statistically correlated with most of the variables from other motivational factors. Overall, the 

correlations ranged from -0.02 (statistically non-significant correlation between int1: Interest 

variable 1 and ego 4: Ego Involvement variable 4) and 0.77 (statistically significant correlation 

between Caa2 and Caa3: Career Aspirations variables 2 and 3).  

Table 7.2 provides the bivariate correlations of all the eight latent motivational factors 

at pre-test, for all participants. The results showed positive and statistically significant 

correlations across all the motivational factors, with Ego Involvement having the lowest 

correlational coefficients with all the other motivational factors. The highest correlation was 

between Interest and Task Goal Orientation (r = 0.84) and the lowest was between Engagement 

and Ego Involvement (r = 0.20).   

Table 7.2 

Latent Factor Correlations of Motivational Variables at Pre-Test 
   1   2   3   4   5   6   7   8 

1. Self-Regulation    --        

2. Engagement .73*** --       

3. Sense of Competence .40*** .48***    --         

4. Interest .54*** .62*** .72***    --     

5. Task Goal Orientation .68*** .71*** .67*** .84*** --    

6. Education Aspiration .42*** .49*** .66*** .75*** .70***    --   

7. Career Aspiration .40*** .41*** .58*** .70*** .62*** .77***   --   

8. Ego Involvement .22*** .20*** .37*** .21*** .22*** .21*** .21***   --  

Note. N = 427. All motivational factors were measured on a 1-6 Likert scale; ***p < .001. 
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7.5.2. Validity of Motivation Survey Instrument 

All CFA models converged without problems during the estimation. The model, which 

tested the ability of 33 motivational variables to form eight distinct motivational factors, 

resulted in an adequate fit at both pre- and post-tests. The goodness-of-fit indices for the model 

are: ² (467) = 934.78, p < 0.001, CFI = 0.94, TLI =0.93, RMSEA = 0.05, 90% CI = [0.04, 

0.05] at pre-test and ² (467) = 812.16, p < 0.001, CFI = 0.95, TLI = 0.94, RMSEA = 0.04, 

90% CI = [0.04, 0.05] at post-test. Furthermore, an examination of factor loading estimates 

showed that the survey items measuring student motivation (indicators) were highly related to 

their purported motivational factors with standardized factor loadings ranging from 0.70 to 

0.89 at pre-test and 0.72 to 0.86 at post-test (see Appendix 7I). The results of the longitudinal 

measurement invariance showed that the instruments were measuring the same constructs over 

time (i.e., pre-test and post-test). Indeed, comparing the model with equal factor loadings and 

the baseline model (i.e., Appendix 7J: Model 2 vs. Model 1) provided strong evidence of 

measurement invariance for factor loadings for all eight motivational factors (the absolute 

value of the difference of the CFI between nested models |CFI| ≤ .01) and partial intercepts in 

all but the Self-Regulation, Engagement, Interest, and Ego Involvement factors over time. 

7.5.3. Descriptive Statistics for the Motivational factors and Achievement Variables 

Table 7.3 shows the descriptive statistics of the eight motivational factors and eight 

achievement variables at pre-test and post-test for the control group and the intervention group. 

The low intraclass correlations (ICCs) indicated only small differences between classrooms in 

the mean levels of the variables. The ICCs indicated that less than 10% of the variance in all of 

the motivational variables (ranging from 0.02 to 0.08) and most of the achievement variables 

was attributable to the classroom level, with the exception of six variables (i.e., pre-tests of 

heat, forces, and speed, Low element interactivity (EI) post-test of heat and high EI post-tests 

of speed and density. For these six variables, between 11% and 19% of the variance could be 
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attributed to variability on the classroom level. Table 7.3 showed that the control group had 

pre-test mean scores ranging from 1.99 to 2.08 and the intervention group had pre-test mean 

scores ranging from 1.97 to 2.02 out of the full marks of 5. The low scores also showed that 

both groups did not have high pre-existing knowledge in any of the four science topics, prior to 

instruction. 

Table 7.3 

Descriptive Statistics for Achievement and Motivation Measures at Pre- and Post-test for 

Control and Intervention Groups 

Cognitive & Motivation Measures 

Control Group  

n = 196 

Intervention Group 

n = 231 

 

Mean (SD) Mean (SD) ICC 

P
re

-t
es

t 

A
ch

ie
v

em
en

t   

Heat 2.04 (0.66) 2.02 (0.56) 0.11 

Forces 1.99 (0.71) 1.98 (0.69) 0.13 

Speed 2.08 (0.78) 1.97 (0.63) 0.12 

Density 1.99 (1.12) 1.87 (1.00) 0.04 

M
o

ti
v

at
io

n
 

   

Self-Regulation 4.83 (0.76) 4.65 (0.86) 0.05 

Engagement 5.01 (0.63) 5.05 (0.71) 0.04 

Sense of Competence 4.03 (1.00) 4.13 (1.04) 0.04 

Interest 4.66 (0.94) 4.74 (0.94) 0.03 

Task Goal Orientation 4.67 (0.88) 4.71 (0.89) 0.03 

Education Aspiration 4.01 (0.98) 4.10 (1.02) 0.03 

Career Aspiration 4.12 (1.03) 4.09 (1.16) 0.03 

Ego Involvement 3.72 (1.04) 3.85 (0.98) 0.03 

P
o

st
-t

es
t 

A
ch

ie
v

em
en

t 

Low Element Interactivity Problems Post-Test    

Heat 4.21 (0.77) 4.04 (0.99) 0.12 

Forces 4.18 (0.82) 4.10 (0.83) 0.02 

#Speed 3.92 (0.77) 4.10 (0.74) 0.04 

#Density 3.91 (1.10) 4.06 (1.00) 0.04 

High Element Interactivity Problems Post-Test    

Heat 2.23 (1.29) 2.22 (1.35) 0.05 

Forces 2.26 (1.57) 2.19 (1.48) 0.06 

#Speed 2.22 (1.41) 3.50 (1.34) 0.19 

#Density 2.27 (1.40) 3.38 (1.31) 0.16 

M
o

ti
v

at
io

n
 

                                                                   n = 196 n = 230  

Self-Regulation 4.21 (0.80) 4.63 (0.70) 0.03 

Engagement 4.57 (0.84) 4.83 (0.72) 0.05 

Sense of Competence 3.62 (0.93) 3.95 (0.93) 0.02 

Interest 4.13 (0.98) 4.40 (0.88) 0.09 

Task Goal Orientation 4.20 (0.89) 4.61 (0.74) 0.08 

Education Aspiration 3.56 (0.93) 3.94 (0.97) 0.05 

Career Aspiration 3.46 (0.97) 3.83 (1.05) 0.05 

Ego Involvement 3.53 (1.03) 3.65 (1.05) 0.02 

Note. ICC = intraclass correlation coefficient; # denotes intervention topics 
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The descriptive statistics also showed that students in both groups were similar in terms 

of their achievement and motivation at pre-test. Results from the t-test showed no statistically 

significant differences between the control and intervention groups in terms of the pre-test 

means of all the four science topics: heat (t(425) = 0.33, p = 0.744), forces (t(425) = 0.24, p = 

0.809), speed (t(425) = 1.50, p = 0.136), and density (t(425) = 1.26, p = 0.209). This showed 

that both groups of students had similar levels of pre-existing knowledge in the topics. 

Additionally, the t-test results showed that both the intervention and the control groups were 

similar in their levels of motivation in seven factors at pre-test: Engagement (t(425) = -0.51, p 

= 0.613), Sense of Competence (t(425) = -0.98, p = 0.328), Interest (t(425) = -0.95, p = 0.344), 

Task Goal Orientation (t(425) = -0.40, p = 0.692), Education Aspiration (t(425) = -0.85, p = 

0.396), Career Aspiration (t(425) = 0.30, p = 0.764), and Ego Involvement (t(425) = -1.36, p = 

0.176). In contrast, the control group had significantly higher means in Self-Regulation at pre-

test (t(425) = 2.31, p = 0.021).  

As seen in Table 7.3, all students had higher mean scores in the low element 

interactivity than the high element interactivity post-tests. This trend was observed for all four 

science topics: heat, forces, speed, and density. The results from the t-test showed that students 

in the control and intervention groups were similar in both the low and high element 

interactivity post-test achievement in the topics of heat (t(425) = 1.91, p = 0.057; t(425) = 0.11, 

p = 0.914, respectively) and forces (t(425) = 1.10, p = 0.272; t(425) = 0.47, p = 0.637, 

respectively), which were the two science topics that both groups of students experienced 

similar regular instruction. In contrast, the t-test results showed that students in the 

intervention group had significantly higher achievement in the high element interactivity post-

test in the topics of speed (t(425) = -9.58, p < 0.001), and density (t(425) = -8.45, p < 0.001), 

during which they had experienced the dual-approach instruction. For achievement in the low 

element interactivity post-test, students in the intervention group had significantly higher 
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achievement than the control group in the topic of speed (t(425) = -2.48, p = 0.014), but both 

groups of students were similar in their achievement in density (t(425) = -1.49, p = 0.137). As 

for students’ post-test motivation, the students in the intervention group had significantly 

higher means which were statistically significant in all seven autonomous motivational factors: 

Self-Regulation (t(425) = -5.71, p < 0.001), Engagement (t(425) = -3.50, p = 0.001), Sense of 

Competence (t(425) = -3.59, p < 0.001), Interest (t(425) = -2.95, p = 0.003), Task Goal 

Orientation (t(425) = -5.14, p < 0.001), Education Aspiration (t(425) = -4.06, p < 0.001), and 

Career Aspiration (t(425) = -3.73, p < 0.001). There was no significant difference between both 

groups in the controlled motivation factor, Ego Involvement (t(425) = -1.25, p = 0.213).  

0.021). Further statistical analyses were carried out with multiple regression models.  

7.5.3. Multiple Regression Models  

Results from the two multiple regression models (i.e., Model 1 and Model 2) for each of 

the 16 outcome variables are presented in Table 7.4. The results showed intervention effects on 

student achievement in speed and density high element interactivity tests, as well as student 

motivation in six factors. 

7.5.3.1. Intervention effects on student achievement 

As expected, for the topics heat and forces in which there was no intervention, no 

significant difference in student achievement was found between the two groups of students, in 

both Models 1 and 2, for both the low and high element interactivity post-tests (see Table 7.4). 

In contrast, the results showed statistically significant positive effects of dual-approach 

instruction on students’ post-test achievement in high element interactivity for speed (β = 0.85, 

p < 0.001) and density (β = 0.76, p < 0.001) in Model 1. The statistically significant positive 

effects remain strong in Model 2 for both the intervention topics speed (β = 0.81, p < 0.001) 

and density (β = 0.72, p < 0.001) in the high element interactivity post-tests. The effect sizes 

were large for both.  
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Table 7.4 

Results from Multiple Regression Analyses 

 Heat: Low EI  Heat: High EI  Forces: Low EI  Forces: High EI 

 1 2  1 2  1 2  1 2 

 β SE Β SE  β SE β SE  β SE β SE  β SE β SE 

Groups - 0.19 0.19  - 0.20 0.19   - 0.02 0.17  - 0.02 0.17  - 0.10 0.09 - 0.16 0.08   - 0.05 0.18 - 0.07 0.18 

Gender      0.08 0.12       0.06 0.11      0.51*** 0.11      0.21** 0.08 

Pre-test      0.12* 0.05           0.08 0.08      

R2 0.01 0.02  0.00 0.00  0.00 0.07  0.00 0.01 

               
 #Speed: Low EI  #Speed: High EI  #Density: Low EI  #Density: High EI 

Model 1 2  1 2  1 2  1 2 

 β SE Β SE  β SE β SE  β SE β SE  β SE β SE 

Groups    0.23*          0.12    0.22 0.12    0.85*** 0.10  0.81*** 0.10     0.15 0.13   0.15 0.10   0.76*** 0.12 0.72*** 0.11 

Gender       0.06 0.09     0.29*** 0.07      0.21* 0.09    0.35*** 0.08 

Pre-test     - 0.01 0.05           0.23*** 0.06      

R2  0.01 0.02  0.18 0.20  0.01 0.08  0.14 0.17 

                      

 Self-Regulation  Engagement  Sense of Competence  Interest 

 1 2  1 2  1 2  1 2 

 β SE Β SE  β SE β SE  β SE β SE  β SE β SE 

Groups 0.26*** .08 0.31*** 0.04  0.16 0.11 0.16* 0.08  0.17*** 0.04   0.14** 0.04  0.14 0.09 0.11 0.08 

Gender   0.05 0.04    0.03 0.05      0.18** 0.06    0.17*** 0.05 

Pre-test   0.48*** 0.04    0.47*** 0.05      0.34** 0.09    0.34*** 0.07 

R2 0.07 0.30  0.03  0.25   0.03  0.21     0.02 0.18 

                    

 Task Goal Orientation  Educational Aspiration  Career Aspiration  Ego Involvement 

 1 2  1 2  1 2  1 2 

 β SE Β SE  β SE β SE  β SE β SE  β SE β SE 

Groups   0.23** 0.08 0.21*** 0.07  0.20*** 0.06 0.17*** 0.05  0.18*** 0.05 0.17*** 0.04  0.07 0.06 0.03 0.06 

Gender   0.14** 0.05    0.18** 0.06    0.18** 0.06    0.08 0.05 

Pre-test    0.47*** 0.07    0.31*** 0.07    0.24*** 0.06    0.52*** 0.04 

R2 0.05 0.30  0.04 0.19  0.03 0.14  0.01 0.29   

Note. EI = Element interactivity; # denotes intervention topics; groups were coded: 1 = students who experienced intervention for topics Speed 

and Density, 0 = students in the control group who did not experience any intervention; gender was coded: 1 = male, 0 = female; High EI 

variables for speed, density, heat and forces were not measured prior to the intervention (pre-test). *p < 0.05. **p < 0.01. ***p < 0.001
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There were no intervention effects in either model for the low element interactivity 

post-tests. The results indicated that students in the intervention group had higher achievement 

in speed and density than the control group, but only for the high element interactivity post-

tests of those topics.  

As shown in Model 1, a comparably high amount of variance was explained by speed 

and density in high element interactivity post-tests (R2 = 0.18 and R2 = 0.14, respectively). 

The results were similar for Model 2: the largest amounts of variance in the achievement 

variables were also explained by high element interactivity post-tests of speed and density (R2 

= 0.20 and R2 = 0.17, respectively).  

As seen from Model 2 in Table 7.4, gender was a significant predictor of achievement 

in five variables, including three from the intervention topics: high element interactivity post-

tests of speed and density (β = 0.29 and β = 0.35, respectively, p < 0.001), low element 

interactivity post-test of density (β = 0.21, p = 0.015) and both low and high element 

interactivity post-tests of forces (β = 0.51, p < .001 and β = 0.21, p = 0.006).  This indicates 

that boys had significantly higher achievement than girls in these five variables. The results 

also showed that pre-test results were positively significant predictors of achievement in low 

element interactivity post-tests of heat (β = 0.12, p = 0.031) and density (β = 0.23, p < 0.001). 

This shows that students who did better in the low element interactivity pre-tests also had 

higher achievement in the low element interactivity post-tests of density and heat. 

7.5.3.2. Intervention effects on student motivation 

The results indicated that students in the intervention group had higher science 

motivation than the control group on most of the motivational variables.  As displayed in Table 

7.4 in Model 2, statistically significant positive effects of dual-approach instruction were 

found in students’ motivation behavioral outcomes in terms of their Self-Regulation (β = 0.31, 

p < 0.001), Engagement (β = 0.16, p < 0.05), Sense of Competence (β = 0.14, p < 0.01), as well 
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as motivation on the SDT continuum: Task Goal Orientation (β = 0.21, p < 0.001), Education 

Aspiration (β = 0.17, p < 0.001), and Career Aspiration (β = 0.17, p < 0.001). Model 1 had 

similar results, with slightly different magnitudes of β. Small effect sizes were observed in all 

of the motivational variables. No significant differences were found between the groups in 

Interest and Ego Involvement.  

As shown in Model 1, the highest amount of variance was explained by Self-Regulation 

(R2 = 0.07) and the smallest amount of explained variance occurred in Ego Involvement (R2 = 

0.01). In Model 2, the largest amounts of variance were explained by Self-Regulation and Task 

Goal Orientation (R2 = 0.30); the smallest (R2 = 0.14) was observed in Career Aspiration.   

As seen in Model 2, gender was a significant predictor of motivation in five variables: 

Sense of Competence (β = 0.18, p < 0.01), Interest (β = 0.17, p < 0.001), Task Goal 

Orientation, (β = 0.14, p < 0.01), Education Aspiration (β = 0.18, p < 0.01), and Career 

Aspiration (β = 0.18, p < 0.01). The results indicated that boys had significantly higher 

motivation in science than girls in these variables. Pre-test was a positively significant 

predictor of motivation in all motivational variables.   

7.6. Discussion 

This study is the first to design a dual-approach instruction that incorporates both the 

cognitive and non-cognitive aspects of learning in a science learning environment and 

examines its effectiveness on students’ achievement and motivation. Given that much research 

has shown the importance of both the cognitive and non-cognitive aspects of learning (e.g., 

Forbes et al., Phan et al., 2016), it is surprising that intervention studies incorporating both 

aspects of learning in the one learning environment to study the effects on student learning and 

motivation are scarce. In this study, the cognitive aspect of learning was incorporated using 

cognitive load theory as a theoretical framework, where element interactivity was managed at 

every stage of learning to ensure that students would not experience cognitive overload. This 
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study adds to the literature in that the isolating-elements strategy from CLT is applicable to, 

and can be implemented in learning tasks, such as hands-on science activities, to ensure that 

learning is within students’ cognitive capacities. The non-cognitive aspect of learning was 

incorporated using self-determination theory as a theoretical framework, where students’ basic 

psychological needs were supported in the learning environment with the hope of nurturing 

student motivation. The results in the study showed that incorporating both aspects of learning 

in a learning environment benefited the students both in terms of their achievement and 

motivation in a range of factors. Although we cannot definitely rule out the possibility that 

gender differences or pre-existing differences within some factors potentially account for the 

results, this possibility is reduced by the analysis which controlled for gender and students’ 

pre-test scores on each outcome measure. The analysis increases the internal validity of the 

intervention effects detected in this study. Thus, the results provide strong support for the 

conclusion that experiencing the dual-approach instruction has a positive impact on students’ 

achievement and motivation.  

7.6.1. Achievement 

All hypotheses were supported. The students had higher mean scores in the low element 

interactivity than the high element interactivity post-tests, as hypothesized (i.e., Hypothesis 1). 

This was probably because low element interactivity tasks were less likely to overload the 

working memory than high element interactivity tasks. There was no significant difference 

between the control and intervention groups in their achievement in the science topics (i.e., 

heat and forces) taught using the regular instruction. The results supported Hypothesis 2 and 

showed that when the intervention was not present, the two groups were similar in their science 

achievement. This finding provided evidence as to the effectiveness of the intervention. The 

effectiveness of the intervention was further supported by the results which showed that the 

students in the intervention group had significantly higher achievement than those in the 
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control condition, in solving complex (i.e., high element interactivity) problems in the topics of 

speed and density: the topics in which they experienced the intervention. The results supported 

Hypothesis 3. The finding that students performed better when element interactivity of 

complex tasks is broken down into successive modules of simpler, lower element interactivity 

learning tasks is consistent with prior research (e.g., Gerjets et al., 2006; Ngu et al., 2015). It is 

also consistent with the proposition that when learning tasks are sequenced in gradual 

increments of element interactivity for students lacking in pre-existing knowledge, learning 

will be more effectively facilitated, resulting in higher achievement compared to learning in 

environments where element interactivity is not effectively managed (i.e., Blayney et al., 

2010).  

However, there was no difference between the control and intervention groups in their 

achievement in low element interactivity post-tests in the topics of speed and density, as 

hypothesized (i.e., Hypothesis 3). This was probably because the low element interactivity 

problems were simple enough for the students to solve using the knowledge and skills gained 

from their regular instruction experiences. This finding is in line with the findings of past 

research studies showing that CLT strategies (incorporated in the intervention) were most 

effective on high element interactivity learning tasks (e.g., Leahy et al., 2015), and not simple 

tasks which do not overload the working memory (Sweller et al., 2011).  

7.6.2. Motivation 

Apart from achievement, students in the intervention group also had higher motivation 

in science, in terms of behavioral outcomes such as self-regulating their learning (i.e., Self-

Regulation), beliefs that they are capable of doing well in science (Sense of Competence), and 

motivational outcomes such as autonomous motivation (i.e., Task Goal Orientation and 

Aspirations in pursuing science-related education and career paths). These findings support 

Hypothesis 4. Students’ higher motivation could be attributed to the specific design of their 
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learning environment to nurture their sense of competence, autonomy and relatedness. The 

finding that students have higher motivation when their basic psychological needs are met is 

consistent with prior research (e.g., Jang et al., 2009). There was no significant difference in 

students’ Ego Involvement between the control and intervention groups, which implies that 

students in both groups did not differ in terms of extrinsic motivation such as peer pressure. 

This finding is consistent with the study design since Ego Involvement was not a focus for the 

intervention. There were also no significant differences between the two groups in terms of 

their attentiveness during science lessons (Engagement) or their intrinsic motivation in learning 

science (Interest). Even though prior research has shown positive associations between the 

fulfillment of basic psychological needs with student engagement and intrinsic motivation 

(Niemiec & Ryan, 2009), the high values reflected in the descriptive statistics indicated a 

ceiling effect (Vogt, 2005), that is, students in both groups reported such high engagement and 

interest in science that no significant difference could be observed in the post-tests between 

groups.  

7.6.3. Implications for Policy and Practice 

The presented findings provide clear evidence that the dual-approach instruction 

resulted in superior learning outcomes in terms of achievement and motivation. To maximize 

student achievement and motivation, teachers should design science lessons that are not only 

authentic, meaningful, and enjoyable to nurture intrinsic motivation (Kadir, 2006; Ng et al., 

2016) but are also sequenced based on students’ pre-existing knowledge, so that element 

interactivity (i.e., cognitive load) at every stage of learning is manageable for effective learning 

(Kalyuga, 2007). The schemas formed when students successfully meet learning sub-goals of 

simpler tasks helps them achieve (and experience) success prior to the main goal of tackling 

complex tasks without overloading their working memory (Kalyuga, 2007; Sweller et al, 

2011). The success experienced by students increases their sense of competence, which is 
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crucial for their continued motivation and success (Kadir et al., 2013; Marsh & Craven, 2006). 

Therefore, when teachers design instructional materials that are within students’ cognitive 

capacities, students are more likely to be motivated to maintain their focus and attention on 

learning tasks, resulting in positive learning outcomes (Paas & Ayres, 2014; Paas, Tuovinen, 

van Merriënboer, & Darabi, 2005). In addition to attending to cognitive load, another 

recommendation for teachers is to create a learning environment that also supports students’ 

basic psychological needs (Niemiec & Ryan, 2009; Wang et al., 2011). Instead of passively 

transmitting knowledge, teachers should present students with learning tasks that challenge 

them, allow them to excel, and provide constructive feedback and encouragement (fulfilling a 

sense of competence). Teachers should also explain rationales for learning tasks, provide ample 

opportunities for students to share their ideas and make decisions, ask students questions and 

listen attentively, avoid coercion, and minimize evaluative pressure (fulfilling a sense of 

autonomy). Last but not least, teachers should maximize friendly interactions with each 

student, ensuring that no student is isolated, treat all students with respect and kindness, and 

show them that their contribution to the learning community is valued (fulfilling a sense of 

relatedness).  

7.6.4. Limitations and Future Research 

As with most research, this study has its share of limitations. First, we did not have 

subjective measures of cognitive load and students’ perceptions of their competence, 

autonomy, and relatedness at regular intervals during their science intervention. Instead, we 

only had objective measures. Future research could obtain subjective measures from students 

about various aspects of the intervention in order to be able to measure the interaction effects 

of the CLT and SDT interventions, and determine the causal effects of students’ achievement 

and motivation. Second, we did not have a 2 X 2 experimental design which would separate the 

students into four groups: (1) no intervention, (2) motivation intervention only, (3) cognitive 
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load intervention only, and (4) both cognitive load and motivation intervention. With such a 

design, we could see more clearly which intervention was the most effective. Future research 

could administer such a design. From this study, we can conclude that intervention features 

increased academic achievement in complex academic tasks and reduced the downward trend 

of academic motivation common in adolescents. Third, we had a short intervention period of 

10 weeks and due to ethics, students were aware that classes would revert to regular science 

lessons after the intervention period, which could have affected student motivation. Past 

educational research indicates that student motivation decreases in adolescents (from about 

Grade 5 onwards) and so breaking this downward trend would take time. Future research could 

look into extending the intervention period. However, the fact that the short intervention period 

of 10 weeks improved student achievement and reduced the downward motivation trend is a 

positive sign that it could have greater positive effects if implemented over a longer period of 

time, involving more science topics. Fourth, the study involved students with high academic 

ability in a school with generally high socioeconomic status. The results may not be 

generalized to students of low ability or even those of average ability. Future research could 

involve student participants of lower academic ability to investigate the intervention effects in 

such a population. 

7.7. Conclusion 

The benefits of the dual-approach instruction are clear in the study: students who 

experienced instruction where their cognitive and psychological needs were met had higher 

achievement and motivation than those who did not. While several studies have shown that the 

fulfillment of these basic psychological needs led to positive learning outcomes and 

motivation, this study supplements the literature by demonstrating that when these needs were 

met and combined with tailored instruction aligned with students’ cognitive capacities, it led to 

superior learning outcomes in two areas: achievement and motivation. It is recommended that 
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science lessons should incorporate both cognitive and motivational aspects of learning to 

optimize student learning and to nurture positive attitudes towards science, including 

aspirations to pursue science-related studies and careers in the future. 
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CHAPTER 8: GENERAL DISCUSSION 

 
8.1. Overview 

Science learning, especially in the area of physics, is known to be complex and 

cognitively demanding (Angell, Guttersrud, Henriksen, & Isnes, 2004). If the complexity of 

learning and cognitive load is not efficiently managed by educators then ineffective instruction 

practices are likely to result in learning deficiencies. These may then lead to undesirable 

consequences such as poor achievement, lowered sense of competence (Marsh & Craven, 

2006), and lack of motivation to learn science (Paas, Tuovinen, van Merriënboer, & Darabi, 

2005).  Over the years, researchers have emphasized the important roles of both the cognitive 

and motivational aspects of student learning (Kadir, 2006; Ng, Liu, & Wang, 2016; Kuppan, 

Munirah, Foong, & Yeung, 2010; Osborne, Simon, & Collins, 2003; Wang & Degol, 2013). In 

spite of this understanding, studies that looked into the interplay of both of these processes are 

still lacking, especially in science instruction. The aim of this thesis is to provide a better 

understanding of the cognitive and motivational aspects of science learning, through a series of 

five studies. In this chapter, a summary and discussion of the main findings of the studies are 

presented. Next, some strengths of the thesis are discussed along with the theoretical and 

methodological contributions, elaborating on the implications for educational policy and 

practice. The chapter concludes also with a segment addressing the limitations of the thesis and 

suggesting several future directions for research.  

8.2. Summary of Main Findings 

In this thesis, I found that there are significant relations between the cognitive (i.e., 

cognitive processes and achievement) and the non-cognitive (i.e., motivation) aspects of 

learning. These relations can be seen in all the five studies in this thesis. As the findings of 
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each study have been discussed in great detail at the end of each chapter of the thesis, in this 

section, I provide a summary of the main findings.   

8.2.1. Study 1 

Extensive self-concept studies over the past decades have shown that academic self-

concept plays an important role in contributing to educational outcomes such as student 

achievement. As such, a review of four decades of self-concept research was conducted in 

Study 1 to summarize the five main findings from past research and to test their replicability on 

a sample of Grade 7 students from Singapore. Study 1 showed that most of the past findings 

(e.g., Marsh & Craven, 2006) were consistent with our sample: that both the cognitive and 

affective components of academic self-concept were positively correlated with student 

achievement, and the cognitive component of self-concept (i.e., sense of competence) in a 

curriculum domain was the stronger predictor of academic achievement (as a cognitive 

outcome) in the domain. This means that when students believe that they can do well (sense of 

competence) in a subject domain such as physics, they are more likely to excel in the physics 

domain. The findings from Study 1 highlighted that academic self-concept plays an important 

role in determining student academic outcomes such as school achievement, and therefore the 

importance of enhancing students’ academic self-concept in schools. The recommendation is 

that instruction should be designed to develop students’ sense of competence, to increase the 

likelihood of higher achievement.  

8.2.2. Study 2 

Whereas Study 1 highlighted the significantly positive relations between students’ 

academic self-concept in a subject domain with student achievement in that domain, research 

has shown that there are several other motivational factors that influence students’ achievement 

and attitudes in learning (Forbes, Kadir, & Yeung, 2017; Ford & Nichols, 1991; Yeung, 

Kuppan, Kadir, & Foong, 2010). Therefore, in Study 2, the relations between students’ 
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cognitive and non-cognitive outcomes were investigated, including several other motivational 

factors (e.g., self-efficacy, engagement, and educational aspiration). The findings of Study 2 

showed that all of the assessed motivational variables were positively correlated with student 

achievement, which is similar to the results found in past studies (e.g., Guo, Parker, Marsh, & 

Morin, 2015; Yeung, Kuppan, Kadir et al., 2010). This demonstrates that student motivation 

plays a role in contributing to education outcomes such as achievement and should be strongly 

considered when designing instruction for everyday lessons. In addition, the correlation 

analysis showed that Grade 7 students’ science motivation is more highly correlated with their 

science achievement in Grade 7 than Grade 6 science achievement in primary school. This 

implies that Grade 7 is a good starting point for intervention studies. Even if students have not 

performed well in Grade 6, effective instruction in Grade 7 that enhances both cognitive and 

motivational processes may help them learn more effectively and nurture their motivation, 

contributing to positive educational outcomes.  

8.2.3. Study 3 

Studies 1 and 2 demonstrated the positive associations between achievement and 

motivation, indicating that effective instructional design needs to nurture students’ motivation. 

Before this could be done effectively, we needed to understand the processes underpinning 

student achievement and motivation. Since science learning involves the interaction of multiple 

elements such as science conceptual and procedural knowledge, and scientific and problem-

solving skills (Carlson, Chandler, & Sweller, 2003; Kadir, Ngu, & Yeung, 2015), it is often 

perceived by students as complex (Angell et al., 2004; Shen & Pedulla, 2000). Cognitive 

science researchers use element interactivity as a construct to explain and understand the 

complexity of learning materials (Leahy & Sweller, 2005; Ngu, Chung, & Yeung, 2015; 

Sweller, 2010). Element interactivity is the level at which learning elements such as conceptual 

information and procedural knowledge interact (Sweller, 2010). Learning tasks with high 
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element interactivity means that the learning elements cannot be learnt in isolation and the high 

level of interactions of the learning elements contributes to high cognitive load which easily 

overloads the working memory, impairing learning (Sweller, Ayres, & Kalyuga, 2011). 

Therefore, it is necessary to ensure that the element interactivity in any learning tasks is not too 

high, for learning to be effective. Study 3 focused on investigating the cognitive processes of 

student learning leading to achievement, and illustrated how element interactivity can be used 

for: (1) the analysis of student cognitive processes during problem-solving to provide an 

indication of student expertise in the domain, and (2) analysis of science problems, to guide 

instructional design to suit students’ cognitive levels. The results of Study 3 illustrated how 

element interactivity provided an indication of students’ expertise in problem solving beyond 

what their test scores indicated. Element interactivity was found to be negatively associated 

with achievement. Novices (i.e., students who lack the expertise to solve science problems due 

to lack of knowledge and skills) who attempted high element interactivity problems had lower 

achievement than novices who attempted lower element interactivity problems. This result 

reinforces past studies (Ayres, 2013; Blayney, Kalyuga, & Sweller, 2010; Gerjets, Scheiter, & 

Catrambone, 2006; Paas & Ayres, 2014). This study thus demonstrates how to use element 

interactivity as a tool to design instruction that caters to students’ cognitive needs.   

8.2.4. Study 4 

Since element interactivity was found to be a useful construct for problem analysis and 

instructional design in Study 3, it was used as a tool to design the instruction in Study 4 and 

Study 5. Study 4 involved an intervention using the isolating-elements strategy (Pollock, 

Chandler, & Sweller, 2002). This strategy reduces element interactivity (and thus cognitive 

load) by breaking down complex learning tasks with many interacting elements into sub-tasks 

with less interacting elements (Kalyuga, 2007). However, the implementation of this strategy 

in my experiment goes beyond what previous studies have attempted, by focusing on students’ 
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actual learning activities, instead of information sheets and worked problems (Sweller et al., 

2011). The isolating and sequencing of the learning elements in students’ instructional 

worksheets were done by me, in collaboration with the teachers. Student achievement 

improved as a result of the intervention, particularly novices who achieved more success when 

they experienced the isolating-elements strategy during the learning of complex tasks than 

when they did not (Blayney et al., 2010). Apart from higher achievement in science, students 

also benefitted from the intervention in terms of their science self-concept. This result is in 

accordance with past self-concept research and showed that when students achieved success in 

a subject domain, it enhanced their self-concept in that domain (Marsh & Craven, 2006). Study 

4 added to the research literature by showing that the strategy worked positively when 

implemented on students’ learning tasks, and concurrently enhanced student achievement and 

academic self-concept. Such findings point to the promise of instruction designed in 

accordance with students’ cognitive capabilities for effective learning, contributing to higher 

achievement.  

8.2.5. Study 5 

Based on the results of previous research studies, instruction that focuses only on the 

cognitive aspects of learning has limited outcomes. Therefore, Study 5 extended the 

intervention of Study 4 by not only implementing the isolating-elements strategy in students’ 

learning tasks, but also putting in place important motivational processes (i.e., supporting 

students’ basic psychological needs of competence, autonomy and relatedness implicit in Self-

Determination Theory, cf. Deci & Ryan, 1985; Ryan & Deci, 2017) in an intervention named 

dual-approach instruction. Study 5 also included more motivational variables related to 

science, in addition to science self-concept. Past research studies were extended by 

incorporating both the cognitive and motivational processes of student learning into a single 

intervention. Similar to past studies (e.g., Ayres, 2013; Blayney et al., 2010) and consistent 
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with Study 4, it was found that the intervention helped students achieve success in solving 

complex science problems. In addition to higher achievement, students in the intervention 

group also had higher science self-concept and autonomous motivation in science than those in 

the control group. This is consistent with previous research, which found that students who had 

their basic psychological needs fulfilled reported positive learning experiences, higher 

motivation, and higher academic achievement than students who did not (e.g., Jang, Reeve, 

Ryan, & Kim, 2009; Ng et al., 2016). In sum, in Study 5, I found that when instruction 

addresses both the cognitive and motivational processes of student learning, students had dual 

benefits in terms of their positive achievement and motivational outcomes, including having 

aspirations to pursue science-related higher education and careers. The results of this study 

provide a promising theoretical framework and model for instruction indicating that all lessons 

should involve both the cognitive and motivational aspects of learning to ensure that the 

learning environment is conducive for students to achieve their optimal best.  

8.3. Discussion of General Findings 

The results from the five studies included in this thesis have shown that learning 

encompasses two aspects: cognitive and non-cognitive, with each playing a critical role in 

student learning and educational outcomes. In this thesis, I have addressed each aspect of 

learning as a process and an outcome. The cognitive aspect was addressed in terms of the 

cognitive processes (i.e., managing element interactivity) during the learning process and 

achievement as an educational outcome. The non-cognitive aspect was addressed in terms of 

supporting students’ basic psychological needs (i.e., creating a learning environment which 

fulfilled students’ need for a sense of competence, autonomy and relatedness), during the 

learning process and student motivation as an educational outcome. Figure 8.1 summarizes the 

main themes of the thesis and the following segment elaborates on how both the cognitive and 

non-cognitive aspects of learning have been addressed by this thesis.  
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Figure 8.1. The cognitive and non-cognitive aspects of learning addressed by the thesis 

 

8.3.1. Instructional Processes  

In this thesis, instructional processes refer to the instructional design and procedures in 

place in everyday science lessons for students. This includes the teaching and learning 

methods, learning environment, as well as the learning tasks and materials used to deliver the 

science lessons. In this thesis, I have argued for the inclusion of both the cognitive and 

motivational aspects of learning into everyday instructional processes for optimal educational 

outcomes, a view supported by evidence from the five reported studies.  

8.3.1.1. Cognitive Process: Managing Element Interactivity 

In order to improve students’ achievement in science, the cognitive processes involved 

in learning need to be considered. Science learning tasks, especially in physics, are often so 
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complex that students find it difficult to excel, resulting in low achievement. According to 

cognitive load theory, complexity of learning is associated with high levels of interactions 

among learning elements (i.e., element interactivity). In this thesis, element interactivity was 

used to analyze the complexity of students’ learning tasks, as well as to describe students’ 

cognitive processes. Results from Studies 3, 4, and 5 showed that element interactivity is 

related to student achievement, which in turn affects other educational outcomes such as 

academic self-concept and motivation. When element interactivity is so high that it overloads 

the working memory (which is known to have limited capacity and duration), learning is 

impeded, which negatively affects achievement. Managing element interactivity is thus a very 

important process that should not be neglected. It is important to assess students’ prior 

knowledge or existing knowledge base as it affects the level of element interactivity that they 

are able to manage. Students with a substantial knowledge base in the domain are not novices, 

so they are able to recall large amounts of information from their long-term memory as a single 

schema to interact with the new information being taught, without overloading their working 

memory. These students are developing expertise in the domain and are able to handle high 

element interactivity tasks. In contrast, students who are novices and lack pre-existing 

knowledge in the domain do not possess such schemas, so their working memory gets 

overloaded more easily as they deal with new information. For these students, the level of 

element interactivity should be reduced at the early stages of learning and gradually increased 

as they gain expertise. In this thesis, this strategy was implemented using the isolating-

elements strategy, and it was shown to improve student achievement and sense of competence. 

Getting students to complete pre-tests before lessons on a new topic will help teachers gauge 

students’ pre-existing knowledge in terms of concepts and procedural skills, which will help in 

designing and delivering instruction with manageable element interactivity.  
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8.3.1.2. Non-Cognitive Process: Basic Psychological Needs 

Cognitive processes can only begin when attention is given to learning tasks. 

Instructional processes that cater to students’ cognitive needs and are well-designed and 

implemented will not be effective if students are so unmotivated that they do not pay attention 

to the instruction. Therefore, non-cognitive processes must also be in place in the learning 

environment in order to nurture student motivation for cognitive engagement. According to 

Self-Determination Theory (SDT), an effective way of nurturing student motivation is by 

supporting students’ basic psychological needs: their sense of competence, autonomy, and 

relatedness (Niemiec & Ryan, 2009). Students are motivated to engage in learning tasks if they 

have a sense that they (1) have the ability to excel in the learning tasks (competence), (2) have 

a choice in the learning tasks (autonomy), and (3) belong to the learning community, which 

includes peers and teachers (relatedness). In this thesis, I have shown that when students’ basic 

psychological needs are supported in an intervention, students’ achievement and motivation 

were positively affected. Apart from making sure that students’ cognitive needs are met 

through cognitive processes, students’ basic psychological needs must also be supported for 

optimal educational outcomes.  

8.3.2. Educational Outcomes 

If both the cognitive and non-cognitive processes of student learning are well-

implemented, students will experience dual-outcomes: cognitive (achievement) and non-

cognitive (motivation) gains. In this thesis, I addressed the cognitive outcomes in terms of 

cognitive processes and achievement and the non-cognitive outcomes in terms of motivation.    

8.3.2.1. Cognitive Outcome: Achievement  

Achievement is a common educational outcome measure in school. Student 

achievement in a subject domain, such as science, is a measure of how well students have 

learned the materials in science and is reflected in terms of test scores from science learning 
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tasks. Students with high achievement in science are assumed to have mastered most of the 

science materials. As seen from the results of the studies in this thesis, achievement does more 

to a student than give them an indication of their cognitive ability. Achievement predicts 

students’ sense of competence in the domain. If students have high achievement in a subject 

domain, they believe more in their ability, and will continue to do well in the domain (Marsh & 

Craven, 2006). The correlation analysis shows that achievement is also related to motivation. 

Students with high achievement tend to have high motivation, which will drive them to be 

more engaged in the domain, leading to higher achievement. Therefore, making sure that 

students achieve success during everyday lessons is very important. In this thesis, it was shown 

that one way of doing this is by managing students’ cognitive processes in the form of element 

interactivity. The success of the intervention indicates that managing element interactivity 

increases students’ achievement and satisfying students’ basic psychological needs not only 

increases achievement but also motivation. In sum, both cognitive and motivational processes 

influence student achievement.  

8.3.2.2. Non-Cognitive Outcome: Motivation 

For many decades, the focus of schools has been student achievement as an educational 

outcome (cognitive). In recent years, more research has shown that motivation (non-cognitive 

educational outcomes) is related to achievement and plays a crucial role in influencing future 

educational and career choices (Wang & Eccles, 2012). In this thesis, I focused on a few 

motivational outcomes that are in accordance with self-concept and SDT: sense of competence, 

interest, task goal, educational aspiration, career aspiration, self-regulation, engagement and 

ego. The first two (i.e., sense of competence, interest) are components of academic self-

concept, which are important predictors of achievement and other motivational outcomes, 

respectively. Students with a high sense of competence in science tend to have high 

achievement, and students with high interest in science are more likely to aspire to further their 
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education in science and thereafter pursue careers related to science. According to SDT, 

students who are autonomously motivated tend to have “more effective performance on 

heuristic types of activities” and “long term persistence” (Deci & Ryan, 2008, p. 183), 

contributing to many important outcomes. A task goal outcome was selected to find out if 

students’ reasons for learning science were autonomously motivated, and due to the declining 

rate of students’ enrolment in future science courses and careers, educational aspiration, and 

career aspiration were also included as motivational outcomes. Basically, students who rated 

themselves highly in interest, task goal, educational aspiration, and career aspiration are 

autonomously motivated. Self-regulation and engagement were selected because they are 

behavioral outcomes of motivation. Students who are autonomously motivated in science will 

most likely exhibit positive behaviors such as self-regulating in their learning and paying 

careful attention to science lessons. Since students learn in a class community, ego-involvement 

was chosen as a controlled motivation outcome to determine if students’ desire to do science 

correlates with their ego of appearing smart in front of their classmates or otherwise. As seen 

from the results of the final study (Study 5), supporting students’ basic psychological needs can 

help nurture their autonomous motivation and had no effect on controlled motivation. The 

consistent relations found between achievement and motivational outcomes suggested that the 

cognitive and non-cognitive processes leading to achievement and motivation should not be 

taken lightly in daily lessons. Every lesson should be designed to help students learn 

effectively in a learning environment which also nurtures student motivation.  

8.4. Strengths of this Thesis 

The main strength of this thesis is that it addresses both the cognitive and motivational 

aspects of science learning, which leads to the development of an instructional approach that 

incorporates both aspects of learning. Achievement and motivational factors were measured by 

multiple items and possessed strong psychometric properties in the studies. The thesis also 
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extended past research by making several theoretical and methodological contributions to the 

field, leading to practical implications for policy makers and practitioners, as well as opening 

up paths for future research. 

8.4.1. Theoretical and Methodological Contribution 

This thesis has provided several theoretical and methodological contributions. First, it 

has incorporated academic self-concept findings from several decades of self-concept studies 

and tested their replicability in a sample of students in Singapore. The findings were consistent 

with past research and supported the replicability and robustness of self-concept theories. Past 

research was extended by testing both components (i.e., cognitive and affective) of academic 

self-concept for each of the five hypotheses. The results showed that the distinction between 

each component of self-concept for each hypothesis allows researchers and practitioners to 

gain novel insights about each component of self-concept, which assists in deciding the 

particular component that should be enhanced when targeting a specific educational outcome. 

Also, the interrelatedness between physics and mathematics achievement and self-concept 

found in this thesis highlights the importance of mathematics as a tool to learn physics, and 

how achievement in mathematics can influence students’ self-concept in physics. Thus, 

students’ mathematical skills should not be ignored by physics educators.  

Second, in this thesis, I compared the relations between motivation and achievement 

between two consecutive school years, during the transition between primary and secondary 

schools (i.e., Grades 6 and 7). While past research normally used achievement scores from 

national data, this thesis not only used the achievement scores of a national local examination 

in Singapore (i.e., Grade 6 PSLE scores), but also the achievement scores of school-based tests 

as an outcome measure. The main reason for using school-based tests was to investigate 

whether students’ achievement in these school-based tests had similar associations with 

students’ motivation in school when compared with their achievement in the national 
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examinations. As shown in the studies, students’ attitudes and motivation were also related to 

their test scores from school-based achievement within the same subject domain.  The stronger 

relations between motivation and achievement in Grade 7 (first year of secondary school), 

rather than Grade 6 achievement, identified that Grade 7 is the best place to begin educational 

interventions focused on changing students’ attitudes towards learning (Anderman, Maehr, & 

Midgley, 1999).  

Third, this thesis is the first to extend previous research using the concept of element 

interactivity to analyze problem tasks (Leahy, Hanham, & Sweller, 2015; Sweller, 2010) by 

using it to determine students’ level of expertise in problem solving. The results align with 

cognitive load theory (Ayres, 2013) and demonstrate that students who were able to manage 

high element interactivity in their solutions were of higher expertise than those who used low 

element interactivity. Therefore, this thesis has shown that students’ level of element 

interactivity in problem solving processes informs educators about their level of expertise 

beyond test scores. I also found that there were students who tried to solve problems using high 

element interactivity in their solutions got the answer wrong because of a science 

misconception. Such students should receive instruction that focuses on the development of 

science conceptual knowledge before acquiring procedural skills for problem solving, since 

focusing on the latter only will introduce extraneous cognitive load due to the expertise 

reversal effect (Kalyuga, 2007). Therefore, this thesis has contributed to evidence about the 

importance of element interactivity as a construct not only for task analysis, but also for student 

problem solving processes to determine their expertise in conceptual or procedural knowledge, 

in order to tailor instruction to suit their cognitive needs.  

Fourth, this thesis is the first to extend previous research using the isolating-elements 

strategy when studying worked examples and information sheets (Ayres, 2013; Pollock et al., 

2002). Student learning of science concepts was sequenced to reduce science instruction 
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element interactivity by gradually introducing simple-to-complex activities as students gained 

expertise. The positive results of the intervention showed that the isolating-element strategy 

also worked for science instruction beyond studying worked examples and information sheets 

or manual. This thesis found that when learning tasks or activities were designed and presented 

such that the element interactivity at each stage of learning was within the cognitive capacities 

of the students, students had higher achievement and a positive self-concept.  

Drawing on the strong interplay of student cognitive processes, achievement and 

motivation from the studies within this thesis as well as past research, this thesis is the first to 

design a dual-approach instruction which encompasses both the cognitive and motivational 

processes of learning in one instructional environment. The isolated-element strategy was used 

to manage element interactivity at every stage of learning and SDT strategies were used to 

support students’ basic psychological needs of competence, autonomy, and relatedness (Deci & 

Ryan, 2008; Ryan & Deci, 2017). The success of the intervention showed that when both the 

cognitive and motivational aspects of learning are well-addressed in an instructional 

environment, students will not only have higher achievement, but also more positive attitudes 

and higher motivation towards learning.   

In summary, in this thesis the strong interplay between the cognitive and non-cognitive 

aspects of science learning was evident. The findings not only provide a better understanding 

of the processes of science learning, but also model how to implement the various strategies to 

improve students’ educational outcomes, which include both achievement and motivational 

factors.  
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8.5. Implications for Policy and Practice 

This research has expanded previous research on the cognitive and non-cognitive 

aspects of learning, showing the interplay of both aspects and providing a heuristic guide for 

future research and intervention designs. The distinctiveness of the cognitive and affective 

components of self-concept found in Study 1 indicates that these components need to be treated 

separately because they influence different educational outcomes. In addition, the domain 

specificity of self-concept means that students’ self-concept is influenced by the achievement 

of that domain, and not by other unrelated domains. Therefore, if the intended educational 

outcome is to improve student achievement in, for instance, chemistry, then intervention 

strategies need to focus on enhancing students’ sense of competence (cognitive component of 

self-concept) in chemistry.  Yet, if the intended educational outcome is to nurture students’ 

long-term goals such as future academic choices and career aspirations in a specific domain, 

then intervention strategies need to focus on enhancing students’ enjoyment and interest 

(affective component of self-concept) in that domain. Academic self-concept has been shown 

to contribute to positive educational outcomes, so schools should look into enhancing both the 

cognitive and affective components of students’ self-concept for optimal results.  

The correlations found in Study 2 between achievement and motivation showed strong 

positive associations. To maximize learners’ motivation, educators need to plan instruction 

according to students’ cognitive abilities to advance their chances of achievement. Conversely, 

if students’ learning environments fail to nurture motivation, achievement is likely to be 

negatively affected. Educators should consider both students’ cognitive processes and 

motivation when designing instruction. Study 1 and Study 2 demonstrate the interrelatedness 

between math and physics (the domain of science focused in this study), so instruction in 

physics should take account of students’ achievement and motivation in mathematics as well.  
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The effectiveness of element interactivity as a construct to guide instruction as shown in 

Studies 3, 4, and 5 suggests that educators could use element interactivity as a construct to 

analyze students’ learning processes as well as to assess learning tasks for their level of 

complexity. The results in Study 4 demonstrated the effectiveness of an intervention, which 

manages element interactivity in terms of student achievement and their sense of competence, 

indicating that educators should ensure that every learning activity is tailored according to 

students’ cognitive needs. Additionally, as shown from the positive results of the intervention 

in Study 5, instruction that manages element interactivity can be further enhanced by nurturing 

student motivation in a learning climate that supports students’ basic psychological needs of 

competence, autonomy, and relatedness. Educators could support students’ basic psychological 

needs by: (1) inspiring and giving students the opportunities to excel in tasks that match their 

competencies while providing them with constructive feedback (competence), (2) setting a 

positive learning climate with minimal evaluative pressure and coercion, explaining the 

rationale behind learning activities, providing students with opportunities to investigate, ask 

questions, share ideas, make decisions and being attentive to what they have to say 

(autonomy), and (3) maximizing friendly interactions with each student, making sure that no 

student is isolated, respecting and valuing their contribution to the learning community 

(relatedness).  

All teachers should be trained to facilitate a dual-approach instruction that supports both 

the cognitive and non-cognitive processes of learning in order to optimize student learning. 

Gone are the days when fear of teachers was advocated as a means for classroom management. 

When both the cognitive and motivational processes are both in place in a learning 

environment, students’ innate desire to be involved in the learning activities will be effective 

classroom management in itself. Apart from academic achievement, students’ joy of learning 
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and their self-belief that they are capable of success are valuable educational outcomes in their 

own right.   

8.6. Limitations and Directions for Future Research 

As with all research, this thesis has its share of limitations, which also suggest several 

prospects for further research in the future. Data for this thesis were collected from Grade 7 

students of similar academic ability, aged 12 to 13 years, attending school in Singapore. This 

limits the generalizability of study results to other students of different age groups and ability 

levels, nationally or internationally. Future research can look into extending the studies to 

include a diversified group of students of different academic abilities, age group, nationality, 

and race, to study the extent to which those variables may affect the results of the studies.  

Additionally, due to the tight time schedule and constraints of the school curriculum, 

the motivational data of each study were collected at only two time-points, once before and 

once after physics instruction. No data were collected after every lesson to assess students’ 

perceptions of the extent to which their basic psychological needs of competence, autonomy, 

and relatedness were fulfilled. There were no data collected to measure students’ mental effort 

during problem solving or when completing the learning activities – the complexity of the task 

was only measured by the element interactivity of the task. While this thesis has provided 

preliminary evidence showing that the intervention improved student achievement and 

motivation, the causal links between the fulfilments of basic psychological needs, motivation 

and achievement could not be determined and reverse causality could not be explored due to 

this lack of information. Future research could look into: (1) collecting motivational data at 

various time-points in between the science achievement tests to provide more information 

about the relations between achievement and motivation and whether the relations vary with 

time, or with the instructional methods of the science topics being taught and, (2) collecting 

student perception data after every lesson or module to determine the extent to which their 
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basic psychological needs were met, the status of their motivation level at the end of the lesson, 

and a mental effort rating by students to determine whether the element interactivity 

sequencing matched their cognitive capabilities, so that the relations between these factors 

could be studied more thoroughly. 

Another limitation of this thesis is the measurement scale for element interactivity of 

the learning activities and problem solving tasks, which is rated as high or low, similar to past 

research. Future research can look into rating element interactivity on a continuous scale, based 

on the number of interacting elements of each task. Quantifying element interactivity would 

facilitate statistical analysis to investigate the relations between element interactivity (or 

cognitive load), achievement, and motivation.  

Although this thesis adds to the current literature regarding the interplay between the 

cognitive and motivational aspects of science learning, due to the self-report nature of the 

motivation measures, the data collected are partially dependent on how well the students read 

and understood the survey items and responded honestly to each item. Future research could 

look into interviewing the students in small groups at various stages of learning to triangulate 

their opinions and perspectives related to their learning experiences. Lesson observations could 

also be conducted in both the intervention and control groups to observe certain behaviors such 

as lesson engagement. Finally, the studies in this thesis could also be extended across several 

disciplines to investigate if the relations between the cognitive and non-cognitive processes 

change over time and across different domains.  

8.7. Conclusion 

This thesis involved five studies that aimed to provide a more comprehensive 

understanding of students’ learning of science. The results from the studies showed an 

interplay between the cognitive and non-cognitive aspects of science learning. Learning 

environments that focus on just one of these two aspects of learning will neither optimize 
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student learning nor lead to long-term educational outcomes such as having aspirations to learn 

science in the future. Science instruction should not only provide opportunities for the students 

to be involved in interesting and meaningful investigations but should also be designed to suit 

the cognitive abilities of the students to ensure that they do not experience cognitive overload. 

In conclusion, efforts should be made to incorporate both the cognitive and motivational 

learning processes into the learning environment and everyday instruction for students to have 

positive cognitive and non-cognitive gains. 
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Appendix 3A  

Academic Self-Concept Variables Used in the Study  

 Factor/Sample Items      

  

Maximal Reliability  

Physics Competence  

.94 

PC1 I am good at PHYSICS  

PC2 I have always done well in PHYSICS  

PC3 PHYSICS is one of my best school subjects  

PC4 I learn things quickly in PHYSICS  

   

Physics Affect       

    

.92 

PA1 I enjoy doing PHYSICS  

PA2 I am really interested in PHYSICS  

PA3 I think it's great that I learn all sorts of things in PHYSICS  

PA4 I find PHYSICS interesting  

   

English Competence      

  

.90 

EC1 I learn things quickly in ENGLISH classes  

EC2 I get good marks in ENGLISH  

EC3 Work in ENGLISH classes is easy for me  

EC4 ENGLISH is one of my best school subjects  

   

English Affect       

   

.93 

EA1 I like ENGLISH  

EA2 I enjoy ENGLISH classes  

EA3 I am interested in ENGLISH  

EA4 Work in ENGLISH classes is interesting  

   

Math Competence      

   

.93 

MC1 MATHEMATICS is one of my best subjects  

MC2 I get good marks in MATHEMATICS  

MC3 I do badly in tests in MATHEMATICS (-)  

MC4 I have always done well in MATHEMATICS  

   

Math Affect       

   

.94 

MA1 I like MATHEMATICS   

MA2 I enjoy MATHEMATICS classes  

MA3 I hate MATHEMATICS (-)  

MA4 I do not like to learn MATHEMATICS (-)  

   

Note. N = 275. The items were randomized in the survey. Items were coded such that higher 

scores reflected more favorable perceptions. (-) = reverse coded item.
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Appendix 3B 

Solution of Path Model (Factor Loadings and Uniquenesses) 

 Physics 
competence 

Physics 
affect 

English 
competence 

English 
affect 

Math 
competence 

Math 
affect 

Uniquenesses 

Factor Loadings        

        
PC1 .94***      .10*** 
PC2 .87***      .24*** 
PC3 .93***      .14*** 
PC4 .81***      .34*** 
PA1  .92***     .15*** 
PA2  .91***     .17*** 
PA3  .69***     .52*** 
PA4  .83***     .30*** 
EC1   .89***    .22*** 
EC2   .80***    .36*** 
EC3   .83***    .32*** 
EC4   .74***    .46*** 
EA1    .92***   .16*** 
EA2    .79***   .38*** 
EA3    .95***   .10*** 
EA4    .80***   .37*** 
MC1     .88***  .23*** 
MC2     .92***  .17*** 
MC3     .77***  .41*** 
MC4     .89***  .18*** 
MA1      .96*** .09*** 
MA2      .86*** .26*** 
MA3      .87*** .23*** 
MA4      .81*** .34*** 
        

 

Note. N = 275. Competence and Affect components of academic self-concept were measured 

in the curriculum domains of physics, English, and math. The model had a 2 (234) = 464.84, 

90% CI (.05, .07), CFI = .96, TLI = .95, RMSEA = .06. ***p < .001. 
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Appendix 4A 

 
Variables and Items Used in the Study to Measure Students’ Attitudes (N=272) 

Factors/Example Items of Attitudes towards physics Cronbach’s 

Alpha 

Mean SD 

Self-concept : 4 items  0.93 3.42 1.19 

I am good at PHYSICS.    

I have always done well in PHYSICS.     

PHYSICS is one of my best school subjects.    

I learn things quickly in PHYSICS.     

Self-efficacy: 5 items 0.85 4.30 0.78 

I am sure I can learn PHYSICS well.    

I can do the hardest work in PHYSICS if I try hard enough.    

I can do almost all the work in PHYSICS if I do not give up.    

Even if the work in PHYSICS is difficult, I can learn it.    

I am capable of doing difficult work in PHYSICS.    

Interest: 4 items 0.91 4.16 1.06 

I enjoy doing PHYSICS.    

I am really interested in PHYSICS.    

I think it's great that I learn all sorts of things in PHYSICS.    

I find PHYSICS interesting.    

Inquiry: 3 items 0.75 4.37 0.88 

I would rather be given the right answer to a PHYSICS 

problem than to work it out myself. (-) 

   

If I don’t see how to do a PHYSICS problem right away, I will 

not even try. (-) 

   

I do not like to be told answers to PHYSICS problems; I prefer 

to work through the answers myself. 

   

Engagement: 5 items 0.87 4.71 0.69 

I pay attention during PHYSICS lessons.    

I am attentive to my work during PHYSICS lessons.    

I listen carefully when the teacher explains something about 

PHYSICS. 

   

I try my best to complete my work in PHYSICS.    

I try my best to answer PHYSICS questions.    

Educational Aspiration: 4 items 0.85 3.69 1.02 

If I could do exactly what I wanted, I would like to study 

PHYSICS in future. 

   

We can’t always do what we want to, but I think I can actually 

learn PHYSICS in college/university. 

   

My parents believe that I can take a PHYSICS course in future.    

If I can choose after secondary school, I will study PHYSICS 

in college /university. 
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Appendix 7A : Sample of Eight Learning Activities used in the Intervention topic 

of Density 

 

Appendix 7B : Examples of How the Learning Activities in the Topic of Density 

were designed to Reduce Cognitive Load and Support Students’ 

Basic Psychological Needs 

 

Appendix 7C : How the Dual-Approach Instruction Supports Students’ Basic 

Psychological Needs 

 

Appendix 7D : Key Differences in the Attributes of ‘Dual-approach instruction’ vs 

regular instruction 

 

Appendix 7E : Cognitive and Non-Cognitive Measures used in the Study to 

Measure the Effectiveness of the Intervention 

 

Appendix 7F : Examples of Post-Test Items of Low Element Interactivity 

 

Appendix 7G : Examples of Post-Test Items of High Element Interactivity 

 

Appendix 7H : Factors and Items used in the Motivation Survey and the Maximal 

Reliability for the Pre-test and Post-test of each Variable 

 

Appendix 7I : Standardized Factor Loadings for the Model at Pre-test and Post-

test 

 

Appendix 7J : Results of Longitudinal Measurement Invariance for Latent 

Motivation Constructs 

 

 

 



SUPPLEMENTARY MATERIALS: CHAPTER 7 

 

322 

 

Appendix 7A 

Sample of Eight Learning Activities used in the Intervention topic of Density 
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Appendix 7A (continued) 
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Appendix 7A (continued) 
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Appendix 7A (continued) 
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Appendix 7A (continued) 
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Appendix 7B 

Examples of How the Learning Activities in the Topic of Density were designed to Reduce 

Cognitive Load and Support Students’ Basic Psychological Needs 

 

 

The following Tables 7B1, 7B2 and 7B3 elaborate on how each science activity (Activities 1 to 

8) shown in Appendix 7A was designed to:  

• establish the concept of density using the isolating-elements strategy to reduce cognitive 

load by: 

1. introducing simpler learning activities before complex activities; 

2. establishing conceptual knowledge before procedural knowledge; 

3. providing step-by-step instructions and probing questions to guide students’ thinking 

processes to establish each concept; 

4. providing several possible answers for students to choose from to guide their learning; 

5. providing structured worksheets with labelled tables and spaces for answers and 

diagrams; and  

• support students’ basic psychological needs: 

A. competence; 

B. autonomy; and 

C. relatedness. 

 

Note. The superscript (i.e., 1-4; A-C) at the end of the description in Tables 7B1, 7B2 and 7B3 

indicates how it maps onto the respective theoretical framework as described above. Students’ 

Basic Psychological needs for C: relatedness is supported in all activities, in a learning 

environment where students worked together towards common goals, with their teacher as 

facilitator, interacting with every student (see Appendix 7C for more details), and will not be 

described in detail for each activity. Other needs were not only met by the activities but also 

through the learning environment and teacher facilitation.  
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Appendix 7B (continued) 

 

Table 7B1 
Hands-On 

Session  

Details of Activity 

(Establishing Conceptual 

Knowledge of Volume2)  

Cognitive load was reduced 

by providing students with 

Difficulty 

Level1 

(low, 

medium, 

high) 

Supporting basic 

psychological needs 

A. competence,  

B. autonomy &  

C. relatedness    

Activity 1 ▪ Making simple length 

measurements and 

using the volume 

formula (pre-existing 

knowledge) to calculate 

volume of cuboid 

▪ Relating calculated 

volume with finding 

volume using the water 

displacement method 

▪ a simple activity that they 

can easily relate to as a 

first activity1 

▪ step-by-step instructions 

and questions to establish 

concept of volume3 

 

 

low 

▪ challenges   

    students to     

    explain their   

observationsA  

▪ students selected     

   instruments of    

   measureB 

 

Activity 2 ▪  Observing the water 

level as object is 

submerged at different 

levels in the water 

▪  Establishing the 

concept that water 

displaced by an object 

represents the volume 

of the object 

▪ step-by-step guidance and 

questions to establish 

concept of volume3  

▪ options of answers to 

guide their thinking 

processes4 

 

low 

▪ challenges      

    students to     

    explain their  

observationsA  

▪ students choose    

   instruments of     

   measureB 

 

 

Activity 3 ▪ Measuring mass and 

relating it to weight 

▪ Observing if a heavier 

object of the same 

volume will displace 

more water when 

submerged  

▪ Reinforcing the concept 

that water displaced by 

an object represents the 

volume of the object, 

regardless of its weight 

▪ step-by-step guidance and 

questions to establish 

concept of volume3  

▪ options of answers to 

guide their thinking 

processes4 and relate 

experimental 

observations to theory  

 

medium 

▪ challenges 

students to  relate 

observations to 

theoryA  

▪ students establish 

own understanding 

of volumeB  

 

Activity 4 ▪ Design experiment to 

find out the volume of a 

floating object 

▪ Choose necessary 

materials to carry out 

the experiment 

▪ a list materials were 

given for students to 

choose for experiment4 

▪ Labelling of procedure, 

space for drawing of 

experimental set-up  and 

report the calculations 

that leads to the object’s 

volume were provided in 

fragments to guide 

students5    

 

 

high 

▪ challenges 

students to  apply 

concept of volume 

to finding volume 

of floating objectA 

▪ students design on 

materials and 

design own 

experiment and 

their shared ideas 

with peers and 

teachersB 
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Appendix 7B (continued) 

Table 7B2 
Hands-On 

Session 

Details of Activity 

(Establishing Conceptual 

Knowledge of Density)  

Cognitive load was reduced 

by providing students with 

Difficulty 

Level (low, 

medium, 

high) 

SDT Traits 

Activity 5 1. Making predictions about 

floating and sinking 

2. Making measurements of 

mass 

3. Using the knowledge 

from Laboratory Session 

1 to make measurements 

of volume  

4. Calculating mass/volume 

5. Observing whether each 

object floats or sinks in 

water 

6. Think about whether the 

same material will have 

the same value of 

mass/volume, and will 

float/sink in water 

regardless of its size 

▪ introducing procedural 

knowledge on density 

(i.e., formula) after 

establishing the 

conceptual knowledge to 

help consolidate their 

learning and as a 

precursor for the 

following activities2 

▪ step-by-step guidance and 

probing questions to 

establish concept of 

density3 

▪ options of answers to 

guide their thinking4 

▪ a table of values to help 

students record their 

measurements5 

 

medium 

▪ challenges 

students to think 

and predictA  

▪ students choose 

instruments of 

measure & 

decide on 

procedures to 

find volumeB 

▪ chance to reflect 

on learning and 

complete follow-

up activities 

autonomouslyB 

 

 

Activity 6 1. Measuring mass  of 

cylinder and deriving the 

mass of water  

2. Applying the formula 

introduced in the 

previous lesson to 

calculate the density of 

water 

3. Comparing density of 

water, given varying 

volumes 

4. Establish the concept that 

‘density’ is the 

characteristic of a 

substance and remains 

the same regardless of 

volume (if volume 

changes, mass changes 

proportionally, making 

density the same). 

▪ step-by-step instructions 

for measurements of 

mass3 

▪ guiding / probing 

questions to establish the 

concept of density as a 

characteristic of a 

substance by reflecting on 

their findings3 

▪ options of answers to 

guide their thinking4 

▪ a table of values to help 

students record their 

measurements5 

▪ the flexibility of 

representing their 

conceptual understanding 

in the form of a diagram5 

 

medium

-high 

▪ challenges 

students to 

explain their 

observations, and 

establish links 

between 

experimental 

findings and 

theoretical 

knowledgeA  

▪ students did 

division of roles 

to complete taskB 

 

Activity 7 1. Applying similar methods 

in Activity 6 to measure 

volume of saltwater, 

derive the mass of 

saltwater and calculate 

the density of saltwater 

 

▪ prompts and step by step 

guidance to establish the 

concept of density3 

▪ a table of values to guide 

students to record the 

necessary measurements5 

 

 

medium 

- high 

▪ challenges 

students to derive 

density of 

saltwaterA  

▪ students used 

past experience 

to decide on  

methods of 

finding mass of 

saltwaterB 
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Appendix 7B (continued) 

Table 7B3 
Hands-On 

Session 

Details of Activity 

(Establishing Conceptual 

Knowledge of Density)  

Cognitive load was reduced 

by providing students with 

Difficulty 

Level (low, 

medium, 

high) 

SDT Traits 

Activity 8 1. Making predictions 

about floating and 

sinking of two objects 

of similar size 

2. Making measurements 

of mass and volume of 

the objects, and 

calculating the density 

of each object 

3. Establish the concept of 

density: Two objects of 

the same size (same 

volume) but different 

mass have different 

density and may have 

different floating / 

sinking nature when 

placed in water / 

saltwater  

4. Making observations 

whether each object 

floats or sinks in water 

and saltwater 

5. Comparing the density 

of object with the 

density of water and 

density of saltwater and 

relating the density 

magnitudes   to the 

floating or sinking of 

the objects in water and 

saltwater 

6. Establish the concept of 

relative density: An 

object sinks if it has a 

higher density than the 

liquid it is in and an 

object floats if it has a 

lower density than the 

liquid it is in 

▪ selective instructions to 

guide them in the activity3 

▪ guiding questions to 

establish concept was 

done by teachers during 

facilitation and class 

discussion3 

▪ a table of values to help 

students record the 

necessary measurements5 

 

 

high 

▪ challenges 

students to think 

and predict, 

using past 

knowledge to 

decide on 

procedures and 

using the 

findings to 

establish whether 

or not the two 

similar cylinders 

are made from 

the same type of 

plasticA 

▪ students choose 

instruments of 

measure & 

decide on 

procedures to 

find volume of 

the two 

cylinders, and 

draw conclusions 

from the data 

collectedB 

▪ chance to reflect 

on learning and 

complete follow-

up activities 

autonomouslyB 
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Appendix 7C 

How the Dual-Approach Instruction Supports Students’ Basic Psychological Needs 

 

Basic 

Psychological 

Needs 

Lesson Design and 

Learning Activities 

Observed 

Teacher Behaviors 

Observed                      

Student Behaviors 

 

 

 

Competence 

 

 

 

 

▪ Activities were 

optimally 

challenging to 

expand students’ 

capabilities but were 

not beyond their 

cognitive abilities  

▪ To support learning, 

isolating-elements 

strategy were 

implemented by 

introducing 

- conceptual 

knowledge before 

procedural 

knowledge 

- simpler activities 

before complex 

activities 

▪ Provided relevant 

information for the 

learning activities so 

that students had 

enough knowledge to 

master the learning 

activities 

▪ Facilitated students 

learning by 

encouraging, guiding 

and giving 

constructive feedback 

for students to excel 

at learning 

▪ Praised students’ 

efforts to nurture 

students’ feelings of 

efficacy 

 

▪ Worked in teams, shared 

knowledge and provided 

encouragement and 

guidance to each other to 

help everyone excel at 

learning 

▪ Engaged in activities 

▪ Called for teacher’s 

assistance when all team 

members were unable to 

accomplish the tasks 

▪ Homework related to the 

activities were provided 

to give students the 

opportunities to work 

independently and test 

their abilities 

 

 

 

 

Autonomy 

 

 

 

 

▪ Some activities were 

left open ended to 

give students the 

autonomy to design 

their own procedures 

for experiments, and 

to make own choices 

for apparatus and  

 

▪ Explained the 

rationale for the 

learning activities 

▪ Encouraged students 

to share their ideas 

and make decisions 

during the learning 

activities 

▪ Listened to students’ 

ideas  

▪ Evaluative pressure 

and coercion was 

minimized 

▪ Independently assigned 

roles to one another 

(timekeeper, leader, 

presenter, etc.) and took 

turns to observe and 

carry out the activities 

▪ Made choices during 

learning tasks 

▪ Asked questions 

▪ Shared ideas and 

findings with peers and 

teachers during group 

and whole-class 

discussions 

 

 

 

 

Relatedness 

 

 

 

▪ Lessons were 

designed for students 

to work on activities 

in teams and teachers 

as facilitators to 

increase interaction 

and nurture a sense of 

belonging to a science 

community where 

students and teachers 

have a role to play in 

the learning of 

science  

▪ Treated students with 

respect and valued the 

contribution of each 

student  

▪ Went around to each 

group and interacted 

with every student 

with kindness and in 

a friendly demeanor  

▪ Teachers ensured no 

student was isolated 

▪ Got along and worked 

well with teachers and 

fellow team mates 

▪ Students reported their 

preference to work in 

teams with teachers as 

facilitators, than regular 

instruction where teacher 

delivered information 

and there was no 

interaction with 

classmates 

▪ No student was isolated 
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Appendix 7D 

Key Differences in the Attributes of ‘Dual-approach instruction’ vs regular instruction 

 

 Dual-Approach Instruction Regular Instruction 

Principle 

Learning Theory 

Constructivism Behaviorism 

 

 

Learning 

Processes  

Cognitive Processes 

Cognitive Load Theory was used to 

manage element interactivity at each 

stage of learning to support learning 

and increase episodes of success and 

achievement.  

 

Non-Cognitive Processes 

Self-Determination Theory was used 

to design learning climate to ensure 

that students’ basic psychological 

needs of competence, autonomy and 

relatedness were met in order to 

enhance student motivation 

 

 

Cognitive Processes 

Instruction involves high 

element interactivity which 

easily overload students’ 

working memory. 

 

 

 

Non-Cognitive Processes 

Instruction does not focus on 

student motivation 

Outcomes Achievement (Cognitive) and 

Motivation (Non-Cognitive) 

 

Achievement (Cognitive) 

Student 

Participation 

Active 

- Working and discussing in teams 

- Working on worksheets 

individually and in teams 

 

Passive 

- Listening to teacher 

- Working on worksheets 

individually 

Student’s Role Solves Problems and make 

observations to deduce scientific 

findings and concepts 

 

Following Directions 

Curriculum 

Goals 

Both Process- and Product-Oriented 

 

Product-Oriented 

Teacher’s Role Guide / Facilitator of Learning Director / Transmitter of 

Information 
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Appendix 7E 

Cognitive and Non-Cognitive Measures used in the Study to Measure the Effectiveness of the 

Intervention 

 

Pre-test measures  INSTRUCTION  

on science topics  

 Post-test measures 

*Cognitive Pre-Test: 

1. Heat 

2. Forces   

3. Speed    

4. Density 

*5-mark Test for each 

topic comprises 5 test 

questions of low element 

interactivity, 

administered before 

instruction 

commencement of each 

topic 

 

  

 

Control group: 

▪ Regular 

instruction on all 

topics: Heat, 

Forces, Speed, 

and Density,  

 

Intervention group: 

▪ Regular 

instruction on 

Heat and Forces 

▪ Dual-approach 

instruction 

intervention on 

Speed and 

Density 

 

 **Cognitive Post-Test: 

1. Heat 

2. Forces   

3. Speed    

4. Density 

**10-mark Test for each topic 

comprises 5-marks test 

questions of high element 

interactivity and 5-marks test 

questions of low element 

interactivity, administered after 

instruction completion of each 

topic 

Motivational factors 

assessed at time 1 

▪ Self-Regulation 

▪ Engagement 

▪ Sense of Competence 

▪ Interest 

▪ Task Goal Orientation 

▪ Education aspiration 

▪ Career aspiration  

▪ Ego Involvement 

  Motivational factors assessed at 

time 2 

▪ Self-Regulation 

▪ Engagement 

▪ Sense of Competence 

▪ Interest 

▪ Task Goal Orientation 

▪ Education aspiration 

▪ Career aspiration  

▪ Ego Involvement 
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Appendix 7F 

Examples of Post-Test Items of Low Element Interactivity 

F.1. Example of low element interactivity question used in the post-test taken from the topic             

Density 

A solid wooden rod with a density of 0.70 g/cm3 is placed in water of density 1.00 g/cm3. 

Does it float or sink? Explain.  

 

     The wooden rod floats in water. 

     The wooden rod sinks in water.  

Reason: ………………………………………………………………………………………. 

..………………………………………………………………………………………………

… 

Elements involved: 

1. Recall the concept of relative density: objects will float in liquid of higher density that 

itself and select the answer 

2. Compare densities of wooden rod and water 

3. Explain using the concept recalled in #2  

(i.e., The wooden rod is of lower density than water, so it floats.) 

The question is categorized as low element interactivity, assuming that #1 is established (i.e., 

students have knowledge of relative density and its relation to floating and sinking).  

 

F.2. Example of low element interactivity question used in the post-test taken from the topic    

Speed 

If a cyclist travels at an average speed of 10 km/h, how long will the cyclist take to travel 

20 km? 

Elements involved: 

1. Recall the concept of average speed: that 10 km/h means travelling 10 km in one hour 

2. Identify that 20 km is twice the distance of 10km, so it should take twice the time; i.e., 2 

hours; Alternatively, apply the formula: average speed = total distance ÷ total time, so by 

algebraic manipulation, total time=total distance average÷speed = 20 km ÷ 10km/h = 2 h 

The question is categorized as low element interactivity, assuming that #1 is established (i.e., 

students have knowledge of average speed and knows how to interpret 10km/h).  
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Appendix 7G 

Examples of Post-Test Items of High Element Interactivity 

1. Example of high element interactivity question used in the post-test taken from the topic 

Density 

Figure A shows three measuring cylinders having equal amount of water in them. Three 

solid cylindrical blocks are having the same base area of  1.0 cm2 and height of 3.0 cm and 

labelled as Block A, B, C are made of aluminium, steel and plastic respectively. Their 

masses are 7.2 g, 23.4 g, and 2.4 g respectively. Density of water = 1.0 g/cm3. 

 

 

 

 

 

 

 

 

 

Figure A 

a. Can you find out the densities of the 3 solid blocks? 

 

         Yes,  density of block A =………………………………… 

density of block B =………………………………… 

density of block C =………………………………… 

        No, there is not enough information. 

b. The 3 solid blocks are then placed into the cylinders as shown by the arrows in Figure A. 

Each division on the measuring cylinder indicates 1.0 ml.  

 

For each solid block, draw in Figure A, showing whether it floats or sinks and the final 

water level in each cylinder. 

 

 

Block Block Block 
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Appendix 7G (continued) 

Elements involved in solving the high element interactivity item taken from the Density topic: 

Part a. 

1. Recall formula for density (mass ÷ volume) and search for the quantities required to 

calculate density in the information given in the problem description 

2. Identify the mass of each block   

3. Locate measurements required for the calculation of volume 

4. Calculate volume of block using the formula “volume = base area x height” 

5. Calculate the density of each block by applying the formula “density = mass ÷ volume” 

and substituting the mass and volume quantities of each block 

Part b. 

6. Recall knowledge of relative density and compare the density of each block with the 

density of water: The block(s) with higher density than that of water will sink in water and 

the block(s) with lower density than the density of water will float in water 

7. Represent the floating and sinking of the blocks in terms of drawing   

a. the block fully submerged in water if it sinks 

b. part of the block in the water, and the rest above water if it floats 

c. the final water level in the measuring cylinder for each case of floating and sinking 

8. For the block that sinks, the rise of the water level represents the volume of the block, so 

divisions on the measuring cylinder needs to be counted to correctly mark the new water 

level. 

9. For the block that floats, if half of the body of the block is in the water, and half is above 

water, then the rise in the water level represents half the volume of the block, so divisions 

on the measuring cylinder needs to be counted to correctly mark the new water level. 
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Appendix 7G (continued) 

2. Example of high element interactivity question used in the post-test taken from the topic 

Speed 

 

a.    A van leaking oil at 1 drop per second was moving at a constant speed of 10 m/s. In the 

space below, mark the locations of the oil marks on the road with a ‘X’. Label the distance 

and time between the marks that you draw.   

 

 

 

b.  A truck leaking water at 1 drop per second was moving at a constant speed of         20 m/s.   

In the space below, mark, with a ‘X’, the locations of the water marks on the ground. Label 

the distance and time between the marks that you draw, using the same scale used in 

question a. above.   

 

 

 

Elements involved: 

Part a. 

1. Recall the concept of constant speed (same distance covered in each unit of time) and 

plan on illustrating the concept 

2. Visualize that the marks made must be of equal distance apart to represent equal distance 

per unit time 

3. Decide on a scale (e.g., 2 cm to represent 10 m)  

4. Use a ruler to measure intervals of 2 cm and make a mark X between those intervals 

5. Use a ruler to make interval markings and label the distance of 10 m and time of 1 s 

Part b. 

6. Recall the concept of constant speed (same distance covered in each unit of time) and 

visualize the diagram to be similar with that of part a.  

7. Using the same scale, 20 m must be represented by 4 cm. 

8. Use a ruler to measure intervals of 4 cm and make a mark X between those intervals 

9. Use a ruler to make interval markings and label the distance of 20 m and time of 1 s 

 

 

Oil marks made on the ground by van 

 

Water marks made on the ground by truck 
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Appendix 7H 

Factors and Items used in the Motivation Survey and the Maximal Reliability for the Pre-test 

and Post-test of each Variable 

 

 Factors/Items of Motivation towards Science Maximal Reliability 

ITEM  Pre Post 

 Self-Regulation (4 items) 0.86 0.83 

Sre1 
If I do not understand a SCIENCE concept, I ask my 

teacher. 

 

Sre2 
When I’m reading my SCIENCE materials and do not 

understand something, I stop and think it over. 

 

Sre3 
If I do not understand a SCIENCE concept, I’ll read the 

information again. 

 

Sre4 
If I do not understand a SCIENCE concept, I'll try to find 

some information on it.  

 

   

 Engagement (5 items) 0.88 0.90 

Eng1 I pay attention during SCIENCE lessons.  

Eng2 I am attentive to my work in SCIENCE.  

Eng3 

I listen carefully when the teacher explains something 

about SCIENCE. 

 

Eng4 I complete my work in SCIENCE diligently.  

Eng5 I try my best to answer SCIENCE questions.  

Eng1   

 Sense of Competence (4 items) 0.90 0.86 

Com1  I am good at SCIENCE.      

Com2 I have always done well in SCIENCE.   

Com3 SCIENCE is one of my best school subjects.  

Com4 I learn things quickly in SCIENCE.   

   

 Interest (4 items) 0.90 0.88 

Int1 I enjoy doing SCIENCE.  

Int2 I am really interested in SCIENCE.  

Int3 I think it's great that I learn all sorts of things in SCIENCE.  

Int4 I find SCIENCE interesting.  

   

 Task Goal Orientation (4 items) 0.90 0.80 

Tgo1 
An important reason I do my work in SCIENCE is that I 

like to learn new things. 

 

Tgo2 
An important reason I do my work in SCIENCE class is 

that I want to get better at it. 

 

Tgo3 
An important reason I do my work in SCIENCE is because 

it is important to me to do my work well. 

 

Tgo4 
An important reason I do my work in SCIENCE is that I 

enjoy figuring things out. 
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Appendix 7H (continued) 

 

 Factors/Items of Motivation towards Science (continued) Maximal Reliability 

ITEM  Pre Post 

 Educational Aspiration (4 items) 0.83 0.84 

Eda1 

It is important to me that I get to study SCIENCE in 

future. 

 

Eda2 I would like to study SCIENCE in college/ university.  

Eda3 

I will be satisfied if I can take a SCIENCE course in 

future.  

 

Eda4 I want to study SCIENCE after secondary school.   

   

 Career Aspiration (4 items) 0.89 0.88 

Caa1 

It is important to me to have a job related to SCIENCE in 

future.   

 

Caa2 In the future, I would like to have a career in SCIENCE.  

Caa3 

I want to have a career that applies SCIENCE to solve 

real life problems. 

 

Caa4 

I will be satisfied if I have a job that has to do with 

SCIENCE. 

 

   

 Ego Involvement (4 items) 0.82 0.86 

Ego1  I want to show others that I am smart in SCIENCE.  

Ego2 

It is important that the teacher in my SCIENCE thinks I 

am smart. 

 

Ego3 

I do not want my classmates to think I am weak in 

SCIENCE. 

 

Ego4 

It is important that I do not look stupid in front of my 

classmates during SCIENCE classes. 

 

    

Note. N = 430. Maximal reliability was computed using CFA.   
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Appendix 7I 

Standardized Factor Loadings for the Model at Pre-test and Post-test 

 

   Pre-Test Post-Test 

Factor Indicator 

Standardized 

Loadings 

Residual 

invariances 

Standardized 

loadings 

Residual 

invariances 

Self-Regulation Sre1 0.70*** 0.51 0.72*** 0.49 

 Sre2 0.85*** 0.28 0.78*** 0.39 

 Sre3 0.74*** 0.45 0.73*** 0.47 

 Sre4 0.83*** 0.31 0.76*** 0.42 

Engagement Eng1 0.79*** 0.38 0.80*** 0.37 

 Eng2 0.82*** 0.33 0.86*** 0.27 

 Eng3 0.72*** 0.49 0.76*** 0.42 

 Eng4 0.72*** 0.49 0.78*** 0.40 

 Eng5 0.79*** 0.38 0.81*** 0.35 

Competence Com1  0.88*** 0.23 0.78*** 0.40 

 Com2 0.78*** 0.39 0.74*** 0.45 

 Com3 0.84*** 0.30 0.82*** 0.34 

 Com4 0.81*** 0.34 0.76*** 0.43 

Interest Int1 0.89*** 0.22 0.82*** 0.34 

 Int2 0.89*** 0.22 0.86*** 0.26 

 Int3 0.75*** 0.44 0.81*** 0.35 

 Int4 0.75*** 0.43 0.75*** 0.44 

Task Goal 

Orientation 

Tgo1 0.86*** 0.27 0.76*** 0.42 

Tgo2 0.75*** 0.44 0.72*** 0.49 

 Tgo3 0.87*** 0.24 0.78*** 0.40 

 Tgo4 0.85*** 0.29 0.75*** 0.44 

Educational Eda1 0.79*** 0.38 0.82*** 0.34 

Aspiration Eda2 0.77*** 0.41 0.76*** 0.42 

 Eda3 0.70*** 0.51 0.72*** 0.49 

 Eda4 0.80*** 0.36 0.84*** 0.30 

Career Caa1 0.73*** 0.46 0.75*** 0.44 

Aspiration Caa2 0.89*** 0.21 0.86*** 0.26 

 Caa3 0.87*** 0.24 0.84*** 0.29 

 Caa4 0.76*** 0.42 0.76*** 0.42 

Ego Involvement Ego1  0.78*** 0.39 0.80*** 0.36 

 Ego2 0.79*** 0.38 0.80*** 0.36 

 Ego3 0.70*** 0.51 0.78*** 0.39 

 Ego4 0.75*** 0.44 0.72*** 0.49 

Note. N = 430. ***p < .001. The goodness-of-fit indices for the model are: 2 (467) = 934.78, 

p < 0.001, CFI = .94, TLI = .93, RMSEA = 0.05, 90% CI = [0.04, 0.05] at pre-test and 2 (467) 

= 812.16, p < 0.001, CFI = .95, TLI = .94, RMSEA = 0.04, 90% CI = [0.04, 0.05] at post-test. 
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Appendix 7J 

Results of Longitudinal Measurement Invariance for Latent Motivation Constructs 

 

     df p CFI TLI RMSEA 90% CI CFI| TLI| RMSEA| 

Self-Regulation           

Model 1 Baseline model 25.67 19   0.140 0.99 0.99 0.03 0.00 to 0.06    

Model 2 Factor Loadings 30.98 23   0.123 0.99 0.99 0.03 0.00 to 0.05 0.00 0.00    0.00 

Model 3 Intercepts 74.81 27 <0.001 0.95 0.95 0.07 0.05 to 0.08 0.04 0.03    0.04 

Model 4 Partial intercepts 47.55 24   0.003 0.98 0.97 0.05 0.03 to 0.07 0.02 0.02    0.02 

            

Engagement           

Model 1 Baseline model 106.58 33 <0.001 0.96 0.94 0.07 0.06 to 0.09    

Model 2 Factor Loadings 126.85 38 <0.001 0.95 0.94 0.07 0.06 to 0.09 0.01 0.00    0.00 

Model 3 Intercepts 204.42 43 <0.001 0.91 0.90 0.09 0.08 to 0.11 0.04 0.04    0.02 

Model 4 Partial intercepts 67.69 24 <0.001 0.97 0.96 0.07 0.05 to 0.08 0.02 0.02    0.01 

            

Competence           

Model 1 Baseline model 28.87 19   0.068 0.99 0.99 0.04 0.00 to 0.06    

Model 2 Factor Loadings 35.20 23   0.050 0.99 0.99 0.04 0.00 to 0.06 0.00 0.00    0.00 

Model 3 Intercepts 68.73 27 <0.001 0.97 0.96 0.06 0.04 to 0.08 0.03 0.03    0.03 

Model 4 Partial intercepts 43.09 24   0.001 0.98 0.98 0.04 0.02 to 0.06 0.01 0.01    0.01 

 

Interest           

Model 1 Baseline model 34.44 19   0.016 0.99 0.98 0.04 0.02 to 0.07    

Model 2 Factor Loadings 45.87 23   0.003 0.98 0.98 0.05 0.03 to 0.07 0.01 0.00    0.00 

Model 3 Intercepts 106.91 27 <0.001 0.94 0.93 0.08 0.07 to 0.10 0.04 0.05    0.04 

Model 4 Partial intercepts 79.31 24 <0.001 0.96 0.95 0.07 0.06 to 0.09 0.02 0.03    0.03 
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Appendix 7J (continued) 

 

     df p CFI TLI RMSEA 90% CI CFI| TLI| RMSEA| 

Task Goal Orientation           

Model 1 Baseline model 27.16 19   0.101 0.99 0.99 0.03 0.00 to 0.06    

Model 2 Factor Loadings 34.60 23   0.057 0.99 0.99 0.03 0.00 to 0.06 0.00 0.00     0.00 

Model 3 Intercepts 83.88 27 <0.001 0.95 0.95 0.07 0.05 to 0.09 0.04 0.04     0.04 

Model 4 Partial intercepts 37.09 24   0.043 0.99 0.99 0.04 0.01 to 0.06 0.00 0.00     0.00 

            

Educational Aspiration           

Model 1 Baseline model 77.03 19 <0.001 0.94 0.92 0.09 0.07 to 0.11    

Model 2 Factor Loadings 80.39 23 <0.001 0.94 0.93 0.08 0.06 to 0.10 0.00 0.02     0.01 

Model 3 Intercepts 109.52 27 <0.001 0.92 0.92 0.09 0.07 to 0.10 0.03 0.02     0.01 

Model 4 Partial intercepts 89.65 24 <0.001 0.94 0.92 0.08 0.06 to 0.10 0.01 0.01     0.00 

 

Career Aspiration           

Model 1 Baseline model 45.96 19   0.001 0.98 0.97 0.06 0.04 to 0.08    

Model 2 Factor Loadings 54.79 23 <0.001 0.98 0.97 0.06 0.04 to 0.08 0.00 0.00     0.00 

Model 3 Intercepts 112.00 27 <0.001 0.94 0.93 0.09 0.07 to 0.10 0.04 0.04     0.03 

Model 4 Partial intercepts 67.69 24 <0.001 0.97 0.96 0.07 0.05 to 0.08 0.01 0.01     0.01 

            

Ego Involvement           

Model 1 Baseline model 33.06 19   0.024 0.99 0.98 0.04 0.02 to 0.07    

Model 2 Factor Loadings 46.42 23   0.003 0.98 0.97 0.05 0.03 to 0.07 0.01 0.01     0.01 

Model 3 Intercepts 93.58 27 <0.001 0.94 0.93 0.08 0.06 to 0.09 0.04 0.04     0.03 

Model 4 Partial intercepts 65.26 24 <0.001 0.96 0.95 0.06 0.05 to 0.08 0.02 0.02     0.02 

Note. N = 430. 2 = chi-squared test, df  = degree of freedom,  p = p-value, CFI = Comparative Fit Index, TLI = Tucker-Lewis Index, RMSEA = 

Root Mean Square of Approximation, CI = confidence interval, |absolute value of the difference between nested models. 


